Review Session 1

Monday, September 22, 2025 10:26 AM

Problems to know

$$\frac{Set \ 4: pg.9 \ (i) \cos(\sin^{-1}(\frac{x}{3}))}{(iii) \cos(\sin^{-1}(\frac{x}{3}))}$$

Set 5: pg, 12 (b)
$$f(x) = \frac{x+6}{x-2}$$
 over $(2,\infty)$
pg. 13 (d) $f(x) = \frac{2x+1}{x+1}$ over $(-1,0)$

pg. 12
$$f(x) = \frac{2x+1}{x+1}$$
 over the domain $(-1,0)$

$$y = \frac{2x+1}{x+1}$$

Solve for X.

$$y(x+1) = 2x+1$$

 $yx+y = 2x+1$
 $yx-2x=-y+1$

$$x(y-2) = -y+1$$

 $x = -y+1 = |y-1| = x$

$$f^{-1}(x) = \frac{x-1}{2-x}$$

of f to get range of f Since flows domain (-1,0) We need XCO and X>-1 domain off-

Y-1 <0

$$y-1 < 0$$

 $y-1 < 0$ and $|2-y>0|$
 $y-1 > -1(2-y)$
 $y-1 > -2+y$
 $y-1 > -2+y$
 $y-1 > -2$
Combine to where both happen $y<1$
 $y<1$

$$\frac{y-1}{2-y} > -1$$

$$y-1 > -1(2-y)$$

$$y-1 > -2+y$$

$$-1 > -2$$

Abusing demain

True. But its true everywhere

Domain of f-1: y (1 =) (-0/1)

$$f^{-1}(x) = \frac{x-1}{2-x}$$

Domain of f-1: y(1 => (-0/1)

$$5e+6:pg.(5(vii)) \lim_{x\to -\infty} (\sqrt{x^2+3x^2}+x)$$

$$\rho_{3,16}$$
 (ix) $\lim_{x \to \infty} \frac{\sin(x)}{x}$

$$\rho_{3.16} \text{ (ix)} \lim_{x\to 0} \frac{\sin(3x)}{7x} \text{ (know how to do)}$$

$$\rho_{3.16} \text{ (ix)} \lim_{x\to 0} \frac{\sin(3x)}{7x} \text{ (w/ different } \#)$$

(x)
$$\lim_{\chi \to \infty} \frac{\sin(\chi)}{\ln(\chi)}$$

$$pg_{i}|_{7}$$
 (xi) $\lim_{x\to\infty} \frac{\cos(3x)}{\ln(x)}$

$$pg. |8 \quad (xvi) \lim_{x \to -\infty} \frac{x^3 + 3x^2}{2x^3 + \sqrt{9x^6 + 4x^4}}$$

$$pg.19 \quad (xvii) \quad \lim_{x \to 6^{-}} \frac{x^{3} + 3x^{2}}{2x^{3} + \sqrt{9x^{6} + 4x^{41}}}$$

(vii)
$$\lim_{x \to -\infty} \left(\frac{\sqrt{x^2 + 3x^2} + x}{\sqrt{x^2 + 3x^2} - x} \right) \cdot \frac{(\sqrt{x^2 + 3x^2} - x)}{(\sqrt{x^2 + 3x^2} - x)}$$
 $a^2 - b^2 = (a - b)(a + b)$

$$=\lim_{X\to-\infty}\frac{x^2+3x-x^2}{\sqrt{x^2+3x^2-x^2}}$$

$$= \lim_{\chi \to -\infty} \frac{3x}{\sqrt{x^2 + 3x^2} - x}$$

$$\sqrt{\frac{1}{x}} = \frac{3x}{\sqrt{x^2 - x}}$$

$$=\lim_{x \to -\infty} \frac{3x}{-x-x}$$

$$=\lim_{x\to-\infty}\frac{3x}{-2x}$$

$$=\lim_{x\to-\infty}\frac{3}{-\lambda}=-\frac{3}{2}$$

$$(x) \lim_{x \to \infty} \frac{\sin(x)}{\ln(x)} = \frac{\#}{\infty} = 0$$

 $\sqrt{\chi^2}$ and $\chi \rightarrow -\infty$

that means $\int x^{2} = -x$

Quick Notes Page 2

$$(xvi) \lim_{X \to -\infty} \frac{x^3 + 3x^2}{2x^3 + 9x^6 + 4x^4}$$

$$\lim_{X \to -\infty} \frac{x^3}{2x^3 + 9x^6}$$

$$\lim_{X \to -\infty} \frac{x^3}{2x^3 - 3x^3}$$

$$\lim_{X \to -\infty} \frac{x^3}{2x^3 - 3x^3}$$

$$\lim_{X \to -\infty} \frac{x^3}{-x^3} = -1$$

$$\int x^{61} \text{ and } x \to -\infty$$

$$\sqrt{x^{61}} = -x^3$$

$$(xv_{11}) \lim_{x\to 0^{-}} \frac{x^3+3x^2}{2x^3+\sqrt{9x^6+4x^4}} \qquad \text{Will do on Wednesday}$$