Friday, November 7, 2025 1:27 PM

Recall from last class the Laplace Transform for 4>0 is $d\{f(1)\} = F(s) = \int_0^\infty e^{-st} f(1) dt$

And we have the following table

Figure 1: Laplace Transform Table

	rigure 1. Lapiace Transform Table		
	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$	
1.	1	$\frac{1}{s}$	
2.	e^{at}	$\frac{1}{s-a}$	
3.	t^n	$\frac{n!}{s^{n+1}}$	
4.	$t^p \ (p>-1)$	$\frac{\Gamma(p+1)}{s^{p+1}}$	
5.	$\sin at$	$\frac{a}{s^2+a^2}$	
6.	$\cos at$	$rac{s}{s^2+a^2}$	
7.	$\sinh at$	$rac{a}{s^2-a^2}$	
8.	$\cosh at$	$\frac{s}{s^2-a^2}$	
9.	$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$	
0.	$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$	
1.	$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$	
2.	$u_c(t)$	$rac{e^{-cs}}{s}$	
13.	$u_c(t)f(t-c)$	$e^{-cs}F(s)$	
4.	$e^{ct}f(t)$	F(s-c)	
5.	f(ct)	$\frac{1}{c} F\left(\frac{s}{c}\right) \ c > 0$	
6.	$\int_0^t f(t-\tau) g(\tau) d\tau$	F(s)G(s)	
7.	$\delta(t-c)$	e^{-cs}	
8.	$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$	
9.	$(-t)^n f(t)$	$F^{(n)}(s)$	

Good news Laplace Transforms also work for piecewise continuous functions!!!

Ex 6: Find the Laplace Transform of $f(t) = \{-1, 0 < t < 2, t > 2\}$

So
$$A\{f\} = \int_0^\infty f(t)e^{-st}dt = \int_0^2 -1e^{-st}dt + \int_2^\infty 1 \cdot e^{-st}dt$$

= $\int_0^2 -e^{-st}dt + \lim_{R \to \infty} \int_2^R e^{-st}dt$

$$= \int_{0}^{2} - e^{-st} dt + \lim_{R \to 20} \int_{2}^{R} e^{-st} dt$$

$$= + \frac{e^{-st}}{t \cdot s} \int_{0}^{2} + \lim_{R \to 20} \left(\frac{e^{-st}}{-s} \right) \int_{2}^{R}$$

$$= \frac{e^{-s(2)}}{s} - \frac{e^{-s(0)}}{2} + \lim_{R \to 20} \left(\frac{e^{-sR}}{-s} - \frac{e^{-2s}}{-s} \right)$$

$$= \frac{e^{-2s}}{s} - \frac{1}{2} + \frac{e^{-2s}}{s}$$

$$= \frac{2e^{-2s}}{s} - \frac{1}{2}$$

Inverse Laplace Transforms

If F(s) = d{f(+)} then we call f(+) the Inverse Laplace transform of f(s).

i.e. If F(s) = & \{f(+)\}, then & -1\{F(s)\} = f(+)

Ex 7: We previously found that S_0 what are the inverse Laplace Transforms?

and S_0 defines S_0 and S_0 are the inverse Laplace Transforms?

by S_0 defines S_0 and S_0 are the inverse Laplace Transforms?

by S_0 defines S_0 defines S

$$0.46e^{4+3} = \frac{1}{5.44}$$

Fx 8: Find the inverse Laplace Transform of F(s)= 2+3

$$A^{-1}\left\{\frac{2}{3} + \frac{3}{5-5}\right\} = 2A^{-1}\left\{\frac{1}{3}\right\} + 3A^{-1}\left\{\frac{1}{5-5}\right\}$$
$$= 2 \cdot 1 + 3 \cdot e^{5+}$$
$$= 2 + 3e^{6+}$$

Ex 9: Find the inverse Laplace Transform of F(s) = 1/52+65+13

Note: 52+65+13 is irreducible so let's rewrite it to look like

Note:
$$5^2+65+13$$
 is irreducible so let's rewrite it to look like $(5-a)^2+b^2$

So let's complete the square.

$$5^{2}+65+9+13-9=(5+3)^{2}+4=(5-(-3))^{2}+2^{2}$$

So
$$\frac{1}{s^2+6s+13} = \frac{1}{(s-(-3))^2+2^2}$$
 looks like $\frac{b}{(s-a)^2+b^2}$

All we are missing is a 2 in the numerator.

$$\mathcal{A}^{-1}\left\{\frac{1}{s^{2}+6s+13}\right\} = \mathcal{A}^{-1}\left\{\frac{2}{2}\cdot\frac{1}{(s-(-3))^{2}+2^{2}}\right\}$$
 by the table
$$=\frac{1}{2}\mathcal{A}^{-1}\left\{\frac{2}{(s-(-3))^{2}+2^{2}}\right\} = \frac{1}{2}e^{-3t}\sin(2t)$$

The method of partial fractions is often helpful in finding Lopkece inverse transforms.

Ex 10: Find the inverse Laplace Transform of F(s)= 45-11

52-75+10

Note the denominator is factorable.

$$5^2 - 75 + 10 = (5-2)(5-5)$$

So we can use partial fraction decomposition.

$$\frac{4s-11}{s^2-7s+10} = \frac{A}{5-2} + \frac{B}{5-5} = \frac{A(s-5)+B(s-2)}{(s-2)(s-5)}$$

$$4s-11 = As-5A+Bs-2B$$

 $4s-11 = (A+B)s-(5A+2B)$

$$\Rightarrow \begin{cases} A+B=4 & 0 \\ 5A+2B=11 & 0 \end{cases}$$

Multiply 1) by 2 and perform 1-2 | Plug A=1 into 1)

A+B=4

Multiply (1) by 2 and perform (1)-(2) | Plug A=1 into (1)

$$2A+2B=8$$

 $-(5A+2B=11)$
 $-3A=-3$
 $A=1$
So $\frac{4s-11}{s^2-7s+10} = \frac{1}{s-2} + \frac{3}{s-5}$
So $A^{-1}\left\{\frac{4s-11}{s^2-7s+10}\right\} = A^{-1}\left\{\frac{1}{s-2}\right\} + 3A^{-1}\left\{\frac{1}{s-5}\right\}$
 $= e^{2+} + 3e^{5+}$