Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. Find the points on the curve $y=x^{2}+2$ closest to the point $(0,4)$.

To receive full credit for this problem, you must show all 7 steps, as discussed in lecture.

Solution: Steps:

(1) Distance
(2) Graph

(3) $D=(x-0)^{2}+(y-4)^{2}=x^{2}+(y-4)^{2}$
(4) $y=x^{2}+2$
(5) Domain of $x:(-\infty, \infty)$

Domain of $y:[2, \infty)$
(6) Plug (4) into (3).

Take the derivative and set $=0$.

$$
\begin{aligned}
D(x, y) & =x^{2}+(y-4)^{2} \\
D(x) & =x^{2}+\left(x^{2}+2-4\right)^{2} \\
& =x^{2}+\left(x^{2}-2\right)^{2} \\
& =x^{2}+x^{4}-4 x^{2}+4
\end{aligned}
$$

$$
=x^{4}-3 x^{2}+4 \quad \text { Hence } x=0, \pm \sqrt{3 / 2}
$$

Now we need to check for absolute minimum. Since we have 3 critical numbers, plug each into D and whichever is the smallest is the absolute minimum.

x	$y=x^{2}+2$	$D=x^{2}+(y-4)^{2}$	Conclusion
$-\sqrt{\frac{3}{2}}$	$\frac{7}{2}$	$\frac{7}{4}$	Absolute Min
0	2	4	
$\sqrt{\frac{3}{2}}$	$\frac{7}{2}$	$\frac{7}{4}$	Absolute Min

(7) Answer: $\left(-\sqrt{\frac{3}{2}}, \frac{7}{2}\right)$ and $\left(\sqrt{\frac{3}{2}}, \frac{7}{2}\right)$

