
Please show **all** your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name:_

1. Find the points on the curve $y = x^2 + 2$ closest to the point (0, 4).

To receive full credit for this problem, you must show all 7 steps, as discussed in lecture.

	x	$y = x^2 + 2$	$D = x^2 + (y - 4)^2$	Conclusion	
	$-\sqrt{\frac{3}{2}}$	$\frac{7}{2}$	$\frac{7}{4}$	Absolute Min	
	0	2	4		
	$\sqrt{\frac{3}{2}}$	$\frac{7}{2}$	$\frac{7}{4}$	Absolute Min	
(7) Answer: $\left(-\sqrt{\frac{3}{2}}, \frac{7}{2}\right)$ and $\left(\sqrt{\frac{3}{2}}, \frac{7}{2}\right)$					

Now we need to check for absolute minimum. Since we have 3 critical numbers, plug each into D and whichever is the smallest is the absolute minimum.