8 pt V	When co	omput	ing limit	s numerica	ally, which	h of t	he follow	ring will	lead t	o the	conclusion	that $\lim_{x \to x}$	$\inf_{x \to 5} f(x) =$	= 0?
1. 4	$\begin{array}{ c c } \hline x \\ \hline f(x) \end{array}$	- 0.1 4.9	<u>- 0.01</u> 4.09	- 0.001 4.009	- 0.0001	1 0	0.0001 5.0001	0.001 5.001	0.01 5.01	0.1 5.1				
В	$\begin{array}{c} x \\ f(x) \end{array}$	4.9	4.99	4.999 - 0.001	4.9999 - 0.0001	5	5.0001 0.0001	5.001 0.001	5.01	5.1				
С	$\begin{array}{ c c }\hline x \\ \hline f(x) \end{array}$	4.9	4.99 4 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	99 5 5	5.0001).0001	l 5.001 l 0.001	5.01 0.01	5.1 0.1					
D	$\frac{x}{f(x)}$	-0.1	- 0.01	- 0.001 - 0.001	-0.0001	1 0 1	0.0001	0.001	0.01	0.1				
E	$\begin{array}{c} x \\ f(x) \end{array}$	-0.1 4.9	-0.01 4.99	-0.001 4.999	-0.0001 4.9999	. 0	0.0001 5	0.001	0.01	0.1	1			
F	$\begin{array}{c} x \\ f(x) \end{array}$	4.9 4.9	4.99 4 4.99 4 4.99 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0001	5.001	5.01 5.01	5.1 5.1	1				

 $8\ pt$ Given

$$f(x) = \frac{x-4}{x^2-4x} = \frac{x-4}{x(x-4)} = \frac{1}{x}$$

Choose the correct statement regarding $\lim_{x \to 0} f(x)$ and $\lim_{x \to 4} f(x)$.

2.
$$A = \lim_{x \to 0} f(x) = 1; \quad \lim_{x \to 4} f(x) = 0$$

 $B = \lim_{x \to 0} f(x) = -4; \quad \lim_{x \to 4} f(x) = 0$
C = $\lim_{x \to 0} f(x)$ does not exist; $\quad \lim_{x \to 4} f(x) = \frac{1}{4}$
D = $\lim_{x \to 0} f(x)$ does not exist; $\quad \lim_{x \to 4} f(x)$ does not exist.
 $E = \lim_{x \to 0} f(x) = 1; \quad \lim_{x \to 4} f(x)$ does not exist.
 $F = \lim_{x \to 0} f(x) = -4; \quad \lim_{x \to 4} f(x) = \frac{1}{4}$

8 pt Let

$$f(x) = \begin{cases} 5x, & x < 1\\ 20 - x, & 1 \le x < 3\\ 2x^2 - 1, & x \ge 3 \end{cases}$$

$$\lim_{x \to 1^{-}} 5x = 5$$

$$\lim_{x \to 1^{-}} (20 - x) = 19$$

$$\lim_{x \to 1^{+}} (20 - x) = 17$$

$$\lim_{x \to 3^{-}} (2x^{2} - 1) = 17$$

$$\lim_{x \to 3^{+}} (2x^{2} - 1) = 17$$

Which statement is true about the discontinuities of f(x)?

3. **A** f(x) is only discontinuous at x = 3.

B f(x) is only discontinuous at x = 5.

- **C** $f(\mathbf{x})$ is only discontinuous at $\mathbf{x} = 19$.
- **D** f(x) is only discontinuous at x = 1.

E $f(\mathbf{x})$ is only discontinuous at $\mathbf{x} = 17$.

F f(x) does not have any discontinuities.

Hole & X=6 (X-6)(X-1) (X-6)(X-1) 8 *pt* Given $f(x) = \frac{x^2 - 36}{x^2 - 7x + 6}$. Which of the following are true? $f(x) = \frac{x^2 - 31}{x^2 - 31}$ I. f(x) has a hole at x = 6. II. f(x) has a hole at x = 1. III. f(x) has a hole at x = -6.

IV. f(x) has a vertical asymptote at x = 6.

V. f(x) has a vertical asymptote at x = 1.

VI. f(x) has a vertical asymptote at x = -6.

4. A II and III

- B I and VC I and IID IV and V
- E II and IV
- $\mathbf{F} \quad \mathrm{I \ and \ VI}$

8 *pt* The following is the graph of $f(\mathbf{x})$:

Which of the following statements is/are TRUE?

- **5**. **A** Only II is true.
 - **B** Only I and III are true.
 - ${\bf C} \quad {\rm Only \ I \ and \ II \ are \ true.}$
 - **D** Only I is true.
 - **E** Only II and III are true.

F Only III is true.

8 pt Jim is deriving the derivative of f(x) using the limit definition and he writes, correctly,

$$f^{I}(x) = \lim_{h \to 0} \frac{5(x+h)^2 - 5x^2}{h}.$$

Which of the following functions could be f(x)?

6. A $5x^2 - x^5$ B 5xC $x^2 - 5x$ D $x^5 - 5x^2$ E x^2 F $5x^2$

$$\begin{array}{l} \hline \$ \ pt \ \ Find the derivative of \ y = \frac{1}{9x^4} - \frac{1}{4}\sqrt[4]{x} = \frac{1}{4} \cdot \frac{1}{x^4} - \frac{1}{4}x^{1/2} \\ \hline 7. \ A \ -\frac{4}{9x^5} - \frac{1}{8}\sqrt[4]{x} \\ B \ \frac{9}{4}x^3 - \frac{1}{4}\sqrt[4]{x} \\ B \ \frac{9}{4}x^3 - \frac{1}{4}\sqrt[4]{x} \\ C \ \frac{1}{36x^3} - \frac{\sqrt[4]{x^3}}{8} \\ D \ \frac{9}{4}x^3 - \frac{\sqrt[4]{x^3}}{8} \\ E \ \frac{1}{36x^3} - \frac{\sqrt[4]{x^3}}{8} \\ F \ -\frac{4}{9x^5} - \frac{1}{4}\sqrt[4]{x} \\ \hline F \ -\frac{1}{9x^5} - \frac{1}{9x^5} \\ \hline F \ -\frac{1}{9x^5} - \frac{$$

8 pt Fi	ind the equation	of the tangent line to the graph of $y = \sqrt{\frac{1}{x}} - 1$ at $x = 4$.
8. A	$y = -4x + \frac{33}{2}$	$y = \frac{1}{\sqrt{x}} - 1 = \frac{x^{1/2} - 1}{\sqrt{y}} = \frac{1}{\sqrt{y}} $
в	$y = -\frac{1}{16}x - \frac{1}{4}$	$y = -\frac{1}{2}\chi = -\frac{1}{2(12)^3} - y(1) - 2(14)^3 - 2.2^3$
С	$y = -4x + \frac{31}{2}$	$y - (-\frac{1}{2})^{-2} - \frac{1}{16}(x - 4)$
D	$y = \frac{1}{2}x - \frac{3}{2}$	$Y + \frac{1}{2} = -\frac{1}{16} \times + \frac{1}{4}$
E	$y = -\frac{1}{16}x + \frac{3}{4}$	$\overline{2} \qquad \overline{2} \qquad \overline{2} \qquad \qquad$
F	$\mathbf{y} = \frac{1}{2}\mathbf{x} - \frac{5}{2}$	· · · · · · · · · · · · · · · · · · ·

 $\boxed{8 \ pt}$ The population of a city since 1990 can be modeled as

 $P(t) = t^2 + 1234t + 116000,$

where t = 0 corresponds to the year 1990. In which year is the population increasing at the rate of 1306 people per year?

8 pt 0	Given	$f(x) = (x^2 - 3x)(e^x + 2)$. Find $f'(0)$.
10. A	- 6	$u=x^{2}-3x$ $v=e^{2}+2$
в	4	$u'=a_{x}-3$ $v=z$
С	12	f'=u'v+v'u
D	- 3	$= (2x-3)(e^{x}+2)+e^{x}(x^{-3x})$
Е	-9	
F	0	f'(0) = (-3)(1+2) + I(0)
		G

8 *pt* Find f'(1) given

$$f(x) = \frac{x^{2} + x}{x^{2} + 1}.$$

$$U(x) = x^{2} + x \quad v(x) = x^{2} + 1$$

$$U(x) = 2x + 1 \quad v'(x) = 2x$$

$$B = \frac{2}{5}$$

$$f' = \frac{v'v - v'u}{v^{2}} = \frac{(2x + 1)(x^{2} + 1) - 2x(x^{2} + x)}{(x^{2} + 1)^{2}}$$

$$D = \frac{5}{2}$$

$$f'(1) = \frac{3 \cdot 2 - 2 \cdot 2}{2^{2}} = \frac{2}{4} = \frac{1}{2}$$

$$\boxed{F = \frac{1}{2}}$$

$$\boxed{F = \frac{$$

 \mathbf{F} 10

=5

Printed from LON-CAPA©MSU

 \mathbf{E} 1

Licensed under GNU General Public License