MA 16010 LESSONS 15-16: RELATED RATES

This space is left for you to take your own notes.

Recipe for Solving a Related Rates Problem

Step 1: Draw a good picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

- **Step 3:** Find an equation relating the relevant variables. This usually involves a formula from geometry, similar triangles, the Pythagorean Theorem, or a formula from trigonometry. **Use your picture!**
- Step 4: Use implicit differentiation to differentiate the equation with respect to time t.
- Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT. Do NOT substitute before this step!

Right Triangle	Triangle	Trapezoid
Pythagorean Theorem:	$A = \frac{1}{2}bh$	$A = \frac{1}{2}(a+b)h$
$a^2 + b^2 = c^2$		
	P = a + b + c	
<u>Rectangular Box</u>	<u>Rectangle</u>	Circle
V = lwh	A = lw	$A = \pi r^2$
S = 2(hl + lw + hw)	P = 2l + 2w	$C = 2\pi r$
Right Circular Cylinder	Sphere	Cone
$V = \pi r^2 h$	$V = \frac{4}{3}\pi r^3$	$V = \frac{1}{3}\pi r^2 h$
$SA = 2\pi rh$	$S = 4\pi r^2$	$SA = \pi r l + \pi r^2$

Some Useful Formulas

Example 1: If x and y are both functions of t and $x + y^3 = 2$.

(a) Find
$$\frac{dy}{dt}$$
 when $\frac{dx}{dt} = -2$ and $y = 1$.

(b) Find
$$\frac{dx}{dt}$$
 when $\frac{dy}{dt} = 3$ and $x = 1$

•

Example 2: A spherical balloon is being deflated at a constant rate of 20 cubic cm per second. How fast is the radius of the balloon changing at the instant when the balloon's radius is 12 cm?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:

WANT:

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

Example 3: A ladder 5 meters long rests on horizontal ground and leans against a vertical wall. The foot of the ladder is pulled away from the wall at the rate of 0.3 m/sec. How fast is the top sliding down the wall when the foot of the ladder is 3 m from the wall?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:

WANT:

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

Example 4: A plane is flying directly away from you at 500 mph at an altitude of 3 miles.

(1) How fast is the plane's distance from you increasing at the moment when the plane is flying over a point on the ground 4 miles from you?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:

WANT:

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

Example 4: A plane is flying directly away from you at 500 mph at an altitude of 3 miles.

(2) How fast is the angle of elevation changing when it is π/3?Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:

WANT:

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

<u>**HW 15.5:**</u> A cylindrical tank standing upright (with one circular base on the ground) has a radius of 22 cm for the base. How fast does the water level in the tank drop when the water is being drained at 28 cm³/sec? Note: The formula right circular cylinder is $V = \pi r^2 h$.

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:

WANT:

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

HW 16.3: A baseball diamond is a square 90 ft on a side. A player runs from first base to second base at 14 ft/sec. At what rate is the player's distance from home base increasing when he is halfway from first to second base?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:

WANT:

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.