MA 16010 LESSONS 15-16: RELATED RATES

This space is left for you to take your own notes.

Recipe for Solving a Related Rates Problem

Step 1: Draw a good picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

Step 3: Find an equation relating the relevant variables. This usually involves a formula from geometry, similar triangles, the Pythagorean Theorem, or a formula from trigonometry. Use your picture!

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT. Do NOT substitute before this step!

Some Useful Formulas

Right Triangle Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$	Triangle $\begin{gathered} A=\frac{1}{2} b h \\ P=a+b+c \end{gathered}$	Trapezoid $A=\frac{1}{2}(a+b) h$
$\begin{aligned} & \frac{\text { Rectangular Box }}{V=l w h} \\ & S=2(h l+l w+h w) \end{aligned}$	Rectangle $\begin{gathered} A=l w \\ P=2 l+2 w \end{gathered}$	Circle $\begin{aligned} & A=\pi r^{2} \\ & C=2 \pi r \end{aligned}$
Right Circular Cylinder $V=\pi r^{2} h$ $S A=2 \pi r h$	Sphere $\begin{gathered} V=\frac{4}{3} \pi r^{3} \\ S=4 \pi r^{2} \end{gathered}$	Cone $\begin{gathered} V=\frac{1}{3} \pi r^{2} h \\ S A=\pi r l+\pi r^{2} \end{gathered}$

Example 1: If x and y are both functions of t and $x+y^{3}=2$.
(a) Find $\frac{\mathrm{dy}}{\mathrm{dt}}$ when $\frac{\mathrm{dx}}{\mathrm{dt}}=-2$ and $y=1$.
(b) Find $\frac{\mathrm{dx}}{\mathrm{dt}}$ when $\frac{\mathrm{dy}}{\mathrm{dt}}=3$ and $x=1$

Example 2: A spherical balloon is being deflated at a constant rate of 20 cubic cm per second. How fast is the radius of the balloon changing at the instant when the balloon's radius is 12 cm ?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:

WANT:

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

Example 3: A ladder 5 meters long rests on horizontal ground and leans against a vertical wall. The foot of the ladder is pulled away from the wall at the rate of $0.3 \mathrm{~m} / \mathrm{sec}$. How fast is the top sliding down the wall when the foot of the ladder is 3 m from the wall?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:
 WANT:

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

Example 4: A plane is flying directly away from you at 500 mph at an altitude of 3 miles.
(1) How fast is the plane's distance from you increasing at the moment when the plane is flying over a point on the ground 4 miles from you?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:
 WANT:

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

Example 4: A plane is flying directly away from you at 500 mph at an altitude of 3 miles.
(2) How fast is the angle of elevation changing when it is $\pi / 3$?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:
 WANT:

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

HW 15.5: A cylindrical tank standing upright (with one circular base on the ground) has a radius of 22 cm for the base. How fast does the water level in the tank drop when the water is being drained at $28 \mathrm{~cm}^{3} / \mathrm{sec}$? Note: The formula right circular cylinder is $\mathrm{V}=\pi r^{2} h$.

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:

WANT:

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

HW 16.3: A baseball diamond is a square 90 ft on a side. A player runs from first base to

 second base at $14 \mathrm{ft} / \mathrm{sec}$. At what rate is the player's distance from home base increasing when he is halfway from first to second base?Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:

WANT:

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

