MA 16010 LESSONS 24+25+26: OPTIMIZATION

Optimization Problems: Often this includes finding the maximum or minimum value of some function.

- e.g. The minimum time to make a certain journey,
- e.g. The minimum cost for constructing some object,
- e.g. The maximum profit to gain for a business, and so on.

How do we solve an optimization problem?

- Determine a function (known as objective function) that we need to maximize or minimize.
- Determine if there are some constraints on the variables. (The equations that describe the constraints are called the constraint equations.)
o If there are constraint equations, rewrite the objective function as a function of only one variable.
- Then we can solve for absolute maximum or minimum like we did before. o Using either the First Derivative Test or Second Derivative Test.

Recipe for Solving an Optimization Problem

Step 1: Identify what quantity you are trying to optimize.
Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.
Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Identify the domain for the function you found in Step 4.
Step 6: Find the absolute extrema of the variable to be optimized on this domain.
Step 7: Reread the question and be sure you have answered exactly what was asked.

Let x and y be such \#s.
Example 1: Of all the numbers whose sum is 50, find the two that have the maximum product.

Step 1: Identify what quantity you are trying to optimize. \qquad Product

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

None
Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

$$
p=x y
$$

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

$$
x+y=50
$$

Step 5: Identify the domain for the function you found in Step 4.

$$
\begin{aligned}
& \text { All numbers } \Rightarrow(-\infty, \infty) \\
& \text { Domain } x \& y:(-\infty, \infty)
\end{aligned}
$$

Step 6: Find the absolute extrema of the variable to be optimized on this domain.
Solve (4) for y. Find P^{\prime} and set $=0$. Check $x=25$ gives ubs

$$
y=50-x
$$

Plug y into (3)

$$
P=x(50-x)
$$

$$
=50 x-x^{2}
$$

$$
\begin{array}{cc}
P^{\prime}=50-2 x=0 & \text { max. } B y 2^{\text {nd }} \\
50=2 x & \text { Test Derivative } \\
x=25 & P^{\prime \prime}=-2 \\
& P^{\prime \prime}(25)=-2<0 \\
& \Rightarrow a b s \max
\end{array}
$$

Step 7: Reread the question and be sure you have answered exactly what was asked.

$$
\begin{array}{rl}
x=25 \Rightarrow y & y=50-x \\
y & =25
\end{array}
$$

Example 2: A carpenter is building a rectangular room with a fixed perimeter of 54 feet. What are the dimensions of the largest room that can be built? What is its area?

Step 1: Identify what quantity you are trying to optimize.
Area, A
Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

$$
A=x y
$$

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

$$
54=p=2 x+2 y \Leftrightarrow 27=x+y
$$

Step 5: Identify the domain for the function you found in Step 4.

$$
\begin{aligned}
& \text { no length } \Rightarrow x=0, y=10 \\
& \text { no width } \Rightarrow x=27, y=27
\end{aligned}\left\{\begin{array}{l}
\text { Domain. } \\
x \& y .
\end{array}(0,27)\right.
$$

Step 6: Find the absolute extrema of the variable to be optimized on this domain.

Solve (4) for y

$$
y=27-x
$$

Plug y into (3)

$$
\begin{aligned}
A & =x(27-x) \\
& =27 x-x^{2}
\end{aligned}
$$

$$
\begin{array}{cc}
\text { Find } A^{\prime} \text { and set }=0 . & \text { Check } x=27 / 2 \text { gives abs } \\
A^{\prime}=27-2 x=0 & \text { max. } B y 2^{n d} \text { Derivative } \\
27=2 x & \text { Test } \\
x=\frac{27}{2} & A^{\prime \prime}=-2 \\
& A^{\prime \prime}\left(\frac{27}{2}\right)=-2<0 \\
& \Rightarrow a b s \max
\end{array}
$$

Step 7: Reread the question and be sure you have answered exactly what was asked.

$$
\left.x=\frac{27}{2} \Rightarrow \begin{array}{l}
y=27-x \\
y=\frac{27}{2}
\end{array}\right\} \text { Area }=\frac{27}{2} \times \frac{27}{2}=\frac{749}{4}=A
$$

Example 3: An open-top box with a square base is to have a volume of 8 cubic feet. Find the dimensions of the box that can be made with the least amount of material.

Step 1: Identify what quantity you are trying to optimize. Surface Area, A
Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

$$
A=x^{2}+4 x y
$$

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

$$
8=V=x^{2} y
$$

Step 5: Identify the domain for the function you found in Step 4.
no length $\Rightarrow x=0, y=0$
no width $\Rightarrow \delta=0^{2} \cdot y$
$=y^{2}, y$
$s=0$ sly big $\left\{\begin{array}{c}\text { Domain } \\ x 4 y\end{array}\right.$
Step 6: Find the absolute extrema of the variable to be optimized on this domain.

Solve (4) for y

$$
y=\frac{8}{x^{2}}
$$

Plug y into (3)

$$
\begin{aligned}
A & =x^{2}+4 x\left(\frac{8}{x^{2}}\right) \\
& =x^{2}+\frac{32}{x} \\
& =x^{2}+32 x^{-1}
\end{aligned}
$$

Check $x=\sqrt[3]{16}$ gives ubs min. By $2^{\text {nd }}$ Derivative Test,

$$
\begin{aligned}
& A^{\prime \prime \prime}=-32(-2) x^{-3} \\
&=2+\frac{64}{x^{3}} \\
& A^{\prime \prime}(\sqrt[3]{16})=2+\frac{64}{16}>0
\end{aligned}
$$

\Rightarrow abs \min

Step 7: Reread the question and be sure you have answered exactly what was asked.

$$
x=\sqrt[3]{16} \Rightarrow y=\frac{8}{x^{2}}=\frac{8}{16^{2 / 3}}
$$

$$
\frac{\text { Dimensions }}{\sqrt[3]{16} \times \sqrt[3]{16}} \times \frac{8}{16^{2 / 3}}
$$

Example 4: From a thin piece of cardboard 20 in by 20 in , square corners are cut out so that the sides can be folded up to make a box. What dimensions will yield a box of maximum volume? What is the maximum volume?

Step 1: Identify what quantity you are trying to optimize.
Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Identify the domain for the function you found in Step 4.

Step 6: Find the absolute extrema of the variable to be optimized on this domain.

Step 7: Reread the question and be sure you have answered exactly what was asked.

Example 5: A company's marketing department has determined that if their product is sold at the price of p dollars per unit, they can sell $q=2400-200 p$ units. Each unit costs $\$ 5$ to make.

1. What price, p, should the company charge to maximize their revenue?

Step 1: Identify what quantity you are trying to optimize. \qquad
Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Identify the domain for the function you found in Step 4.

Step 6: Find the absolute extrema of the variable to be optimized on this domain.

Step 7: Reread the question and be sure you have answered exactly what was asked.

Example 5: A company's marketing department has determined that if their product is sold at the price of p dollars per unit, they can sell $q=2400-200 p$ units. Each unit costs $\$ 5$ to make.
2. What price, p, should the company charge to maximize their profit?

Step 1: Identify what quantity you are trying to optimize. \qquad
Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Identify the domain for the function you found in Step 4.

Step 6: Find the absolute extrema of the variable to be optimized on this domain.

Step 7: Reread the question and be sure you have answered exactly what was asked.

Example 6: A Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window. Find the dimensions of a Norman window of maximum area if the total perimeter is 10 feet.

Example 7: A rectangular box is to have a square base and a volume of $800 f t^{3}$. If the material for the base costs $\$ 2$ per square foot, the material for the sides costs $\$ 4$ per square foot, and the material for the top costs $\$ 1$ per square foot, determine the minimum cost for constructing such a box.

Example 8: Find the point on the graph of $f(x)=2 x+4$ that is the closest to the point (1,3).

