Lesson 33: The Fundamental Theorem of Calculus (FTC) Pt 2

Lesson 33: The Fundamental Theorem of Calculus

Recall
$$\int_a^b f(x) dx = F(x) \int_a^b = F(b) - F(a)$$

Well the antiderivative of q (x) is g(x). So $\int_{a}^{b} g'(x)dx = g(x) \Big|_{a}^{b} = g(b) - g(a)$

$$= \int_{0}^{\pi} \left(\cos x + \sin x - \sec^{2} x \right) dx$$

$$= \int_{0}^{\pi} \left(\sin x - \sec^{2} x \right) dx$$

$$= (-\cos x - \tan x) \int_{0}^{\pi}$$

$$=-cos(\pi)-+an(\pi)-(-cos(0)-tan(0))$$

$$= -(-1) - 0 - (-1-0)$$

Ex 2: The growth rate of the population of a city is

$$b(+) = -200(3-+)$$

where t is time in years. How does the population change t = 1 year to t = 3 years?

$$\int_{1}^{3} P'(t)dt = \int_{3}^{3} -500(3-t)dt$$

$$= -500 \int_{3}^{3} (3-t)dt$$

$$= -500 \left(3+-\frac{1^{2}}{2}\right)\Big]_{1}^{3}$$

$$= -500 \left[3(3)-\frac{3^{2}}{2}\right] - \left(3(1)-\frac{1^{2}}{2}\right)\Big]$$

$$= -500 \left[4-\frac{1}{2}-3+\frac{1}{2}\right]$$

$$= -500 \left[6-\frac{8}{2}\right]$$

$$= -500 \left[6-\frac{1}{2}\right]$$

$$= -1000$$

Recall

- Displacement is the difference in position. - It could be positive or negative - The sign indicates the direction.

By FTC,

$$S_a^b V(+) d+ = S_a^b S'(+) d+ = S(+) \Big|_a^b$$

 $= S(b) - S(a)$

Ex 3: The velocity function, in feet per second, is given for a particle moving along a straight line v(+) = -10+ +20

where t is in seconds.

(a) Find the displacement from t = 0 to t = 2 seconds.

Ex 3: The velocity function, in feet per second, is given for a particle moving along a straight line v(+) = -10t + 20

where t is in seconds.

HW 33.4: A faucet is turned on at 9:00 am and water starts to flow into a tank at the rate of

where t is time in hours after 9:00 am and the rate r(t) is in cubic feet per hour.

(a) How much water, in cubic feet, flows into the tank from 10:00 am to 1:00 pm?

$$= 4(4)^{3/2} - 4(1)^{3/2}$$

$$= 4 \cdot 2^3 - 4 \cdot 1$$

$$= 32 - 4$$

$$= 28$$

HW 33.4: A faucet is turned on at 9:00 am and water starts to flow into a tank at the rate of

where t is time in hours after 9:00 am and the rate r(t) is in cubic feet per hour.

(b) How many hours after 9:00 am will there be 121 cubic feet of water in the tank?

$$\int_{0}^{x} r(t)dt = 121 \quad \text{solve this for } x.$$
By using my work in @.

$$4t^{3/2} = 121$$

$$4x^{3/2} - 4(0)^{3/2} = 121$$

$$4 x^{3/2} = 121$$

$$x^{3/2} = 121/4$$

$$x^{3/2} = 121/4$$

$$(x^{3/2})^{2/3} = (121/4)^{2/3}$$

$$x = (121/4)^{2/3}$$