MA 16010 LESSON 34: NUMERICAL INTEGRATION (Blank Copy)

EX 1: (When given an integral,) Use the Trapezoid Rule to approximate	
using $n = \underline{\hspace{1cm}}$.	

Solution: (1) First calculate Δx .

$$b-a$$
 = _____

$$\Delta x = \frac{b-a}{n} = \underline{\hspace{1cm}}$$

(2) Determine what f(x) is.

Hence
$$f(x) =$$

(3) Find the following values:

$$x_0 = \underline{\qquad} f(x_0) = \underline{\qquad}$$

$$x_1 = f(x_1) =$$

$$x_2 =$$
 $f(x_2) =$

$$f(x_3) =$$

$$f(x_0) =$$

$$2 \cdot f(x_1) =$$

$$2 \cdot f(x_2) =$$

$$f(x_3) =$$

(4) Sum all the values in the black box. = _____

(5) Multiply the value found in (4), Δx found in (1), and 1/2, which yields our answer.

MA 16010 LESSON 34: NUMERICAL INTEGRATION (Blank Copy)

EX 2: (When given a picture,) Approximate the area of the shaded region by using the Trapezoid Rule with n =_____

Solution: (1) First calculate Δx .

$$b-a$$
 = _____

$$\Delta x = \frac{b-a}{n} = \underline{\hspace{1cm}}$$

(2) Find the following values:

$$x_0 = f(x_0)$$

$$f(x_0) =$$

$$x_1 =$$

$$f(x_1) =$$

$$x_2 =$$

$$f(x_2) =$$

$$x_3 =$$

$$f(x_3) =$$

$$f(x_0) =$$

$$2 \cdot f(x_1) =$$

$$2 \cdot f(x_2) =$$

$$f(x_3) =$$

(3) Sum all the values in the black box. = _____

(4) Multiply the value found in (3), Δx found in (1), and 1/2, which yields our answer.