MA 16010 LESSON 34: NUMERICAL INTEGRATION (Examples w/ Solutions)

EX 1: Use the Trapezoid Rule to approximate $\int_{0}^{3} x^{2} d x$ using $n=3$. Round your answer to the nearest tenth.

Solution: (1) First calculate Δx.

$$
\begin{aligned}
a & =\frac{0}{3} \\
b & =\frac{3}{3-0=3} \\
b-a & =3 \\
\Delta x=\frac{b-a}{n} & =\frac{3}{3}=1
\end{aligned}
$$

(2) Determine what $f(x)$ is.

$$
\int_{0}^{3} \sqrt{x^{2}} d x
$$

$$
\text { Hence } f(x)=
$$

\qquad
(3) Find the following values:

$x_{2}=2$
$x_{3}=3$

\qquad

$$
f\left(x_{1}\right)=1
$$

$$
f\left(x_{2}\right)=4
$$

$$
f\left(x_{3}\right)=
$$

\qquad

(4) Sum all the values in the black box. = \qquad
(5) Multiply the value found in (4), Δx found in (1), and $1 / 2$, which yields our answer.

$$
19 \times 1 \times \frac{1}{2}=\frac{19}{2}
$$

MA 16010 LESSON 34: NUMERICAL INTEGRATION (Examples w/ Solutions)

EX 2: Approximate the area of the shaded region by using the Trapezoid Rule with $n=3$

Solution: (1) First calculate Δx.

$$
\begin{aligned}
& a=\frac{-10}{20} \\
& b=\frac{20}{b-a} \\
&=20-(-10)=30 \\
& \Delta x=\frac{b-a}{n}=\frac{30}{3}=10
\end{aligned}
$$

(2) Find the following values:

$$
\begin{array}{lll}
x_{0}=-10 & f\left(x_{0}\right)=10 \\
x_{1}=-0 & f\left(x_{1}\right)=20 \\
x_{2}=\frac{10}{20} & f\left(x_{2}\right)=25 \\
x_{3}=\frac{20}{}=15
\end{array} \quad \begin{array}{ll}
f\left(x_{0}\right)=10 \\
2 \cdot f\left(x_{1}\right)=40 \\
2 \cdot f\left(x_{2}\right)=50 \\
f\left(x_{3}\right) & =15
\end{array}
$$

(3) Sum all the values in the black box. $=115$
(4) Multiply the value found in (4), Δx found in (1), and $1 / 2$, which yields our answer.

$$
115 \times 10 \times \frac{1}{2}=575
$$

