Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. Find the derivative of the following functions:
(a) $[\mathbf{2} \mathbf{p t s}] u(x)=3 e^{x}$
(b) $[\mathbf{2} \mathbf{p t s}] v(x)=2 \cos (x)$

Solution: Recall that

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

So $u^{\prime}(x)=3 e^{x}$

Solution: Recall that

$$
\frac{d}{d x}(\cos x)=-\sin x
$$

So $v^{\prime}(x)=-2 \sin x$
(c) $[\mathbf{2} \mathbf{~ p t s}] w(x)=\frac{2}{x^{2}}+4 x^{2}+6 x+1$

Solution: Rewrite $w(x)$ to not have any fractions. i.e.

$$
w(x)=2 x^{-2}+4 x^{2}+6 x+1
$$

By Power Rule, $w^{\prime}(x)=-4 x^{-3}+8 x+6=\frac{-4}{x^{3}}+8 x+6$
2. [4 points] Let $h(x)=u(x) \cdot w(x)$. Find $h^{\prime}(x)$. (Don't Simplify.)

Solution: Recall that when $h(x)=u(x) \cdot w(x)$, we use Product Rule, which states

$$
h^{\prime}(x)=u^{\prime}(x) w(x)+u(x) w^{\prime}(x)
$$

Using part (a) and (c), we get

$$
\begin{aligned}
h^{\prime}(x) & =3 e^{x}\left(\frac{2}{x^{2}}+4 x^{2}+6 x+1\right)+3 e^{x}\left(\frac{-4}{x^{3}}+8 x+6\right) \\
& =3 e^{x}\left(\frac{2}{x^{2}}+4 x^{2}+6 x+1+\frac{-4}{x^{3}}+8 x+6\right) \\
& =3 e^{x}\left(\frac{-4}{x^{3}}+\frac{2}{x^{2}}+4 x^{2}+14 x+7\right)
\end{aligned}
$$

