Please show **all** your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name:___

(FOR BOTH PROBLEMS DON"T SIMPLIFY YOUR FINAL ANSWER!!!

1. **[5pts]** Let $y = (3x - 1)^{100}$. Find y'.

Solution:						
	Let Then	$\begin{array}{l} f(x) = x^{100} \\ f'(x) = 100 x^{99} \end{array}$	$\left[0.5 \mathrm{pt} ight] \left[0.5 \mathrm{pt} ight]$	and and	g(x) = 3x - 1 $g'(x) = 3$	$[0.5 { m pt}] \ [0.5 { m pt}]$
By Chain Rule	,	$y' = f'(g(x)) \cdot g'(x)$ $= f'(3x - 1) \cdot 3$			[2pt]	
		$= 100(3x-1)^{99} \cdot 3$ $= 300(3x-1)^{99}$			[1pt]	

2. [5pts] Find the derivative $y = \sqrt{r^2 - 6x^2}$, where r is a constant.

Solution: Notice r is a constant so it's derivative is zero! Let $f(x) = \sqrt{x} = x^{1/2}$ [0.5pt] and $g(x) = r^2 - 6x^2$ [0.5pt] Then $f'(x) = \frac{1}{2}x^{-1/2}$ [0.5pt] and g'(x) = -12x [0.5pt] By Chain Rule, $y' = f'(g(x)) \cdot g'(x)$ [2pt] $= f'(r^2 - 6x^2) \cdot (-12x)$ $= \frac{1}{2}(r^2 - 6x^2)^{-1/2} \cdot (-12x)$ [1pt] $= \frac{-12x}{2(r^2 - 6x^2)^{1/2}}$ $= \frac{-6x}{\sqrt{r^2 - 6x^2}}$