Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. [5pts] Find the derivative of $y=\ln \sqrt{\frac{4 x+3}{x^{2}+2}}$

Solution: Method 1: Rewrite y :

$$
\begin{aligned}
y & =\ln \sqrt{\frac{4 x+3}{x^{2}+2}} \\
& =\ln \left(\frac{4 x+3}{x^{2}+2}\right)^{1 / 2} \\
& =\frac{1}{2} \ln \frac{4 x+3}{x^{2}+2} \\
& =\frac{1}{2}\left[\ln (4 x+3)-\ln \left(x^{2}+2\right)\right] \\
& =\frac{1}{2} \ln (4 x+3)-\frac{1}{2} \ln \left(x^{2}+2\right) \quad[3 \mathbf{p t s}]
\end{aligned}
$$

Now differentiate. Note each of these logarithms are composition of functions, so use Chain Rule when differentiating.

$$
y^{\prime}=\frac{1}{2} \cdot \frac{1}{4 x+3} \cdot(4)-\frac{1}{2} \cdot \frac{1}{x^{2}+2} \cdot(2 x)=\frac{2}{4 x+3}-\frac{x}{x^{2}+2} \quad[\mathbf{2 p t s}]
$$

Method 2: Find the derivative using Chain Rule, then Chain Rule, then Quotient Rule. Hence

$$
y^{\prime}=\underbrace{\frac{1}{\left(\frac{4 x+3}{x^{2}+2}\right)^{1 / 2}}}_{2 \mathrm{pts}} \cdot \underbrace{\frac{1}{2}\left(\frac{4 x+3}{x^{2}+2}\right)^{-1 / 2}}_{2 \mathrm{pts}} \cdot \underbrace{\frac{4\left(x^{2}+2\right)-(4 x+3)(2 x)}{\left(x^{2}+2\right)^{2}}}_{1 \mathrm{pt}}
$$

2. [5pts] Find the second derivative of $y=\sin ^{2}(x)$. Simplify!

Solution: Rewrite y :

$$
y=\sin ^{2}(x)=(\sin x)^{2}
$$

To find the second derivative, we need to find the first derivative first. By Chain Rule,

$$
y^{\prime}=2 \sin x \cdot \cos x \quad[\mathbf{2 p t}]
$$

To find the second derivative, take the derivative of y^{\prime}. Note to do so, you need to use Product Rule.

$$
\begin{aligned}
y^{\prime \prime} & =2 \sin x \cdot \sin x+2(-\cos x) \cdot \cos x & & {[\mathbf{2 p t}] } \\
& =2 \sin ^{2} x-2 \cos ^{2} x & & {[\mathbf{1 p t}] }
\end{aligned}
$$

