Please show **all** your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name:_

1. [5pts] Find the derivative of $y = \ln \sqrt{\frac{4x+3}{x^2+2}}$

Solution: Method 1: Rewrite y:

$$y = \ln \sqrt{\frac{4x+3}{x^2+2}}$$

= $\ln \left(\frac{4x+3}{x^2+2}\right)^{1/2}$
= $\frac{1}{2} \ln \frac{4x+3}{x^2+2}$
= $\frac{1}{2} \left[\ln(4x+3) - \ln(x^2+2)\right]$
= $\frac{1}{2} \ln(4x+3) - \frac{1}{2} \ln(x^2+2)$ [3pts]

Now differentiate. Note each of these logarithms are composition of functions, so use Chain Rule when differentiating.

$$y' = \frac{1}{2} \cdot \frac{1}{4x+3} \cdot (4) - \frac{1}{2} \cdot \frac{1}{x^2+2} \cdot (2x) = \boxed{\frac{2}{4x+3} - \frac{x}{x^2+2}} \quad [2pts]$$

Method 2: Find the derivative using Chain Rule, then Chain Rule, then Quotient Rule. Hence

$$y' = \underbrace{\frac{1}{\underbrace{\left(\frac{4x+3}{x^2+2}\right)^{1/2}}_{2 \text{ pts}}} \cdot \underbrace{\frac{1}{2} \underbrace{\left(\frac{4x+3}{x^2+2}\right)^{-1/2}}_{2 \text{ pts}} \cdot \underbrace{\frac{4(x^2+2) - (4x+3)(2x)}{(x^2+2)^2}}_{1 \text{ pt}}}_{1 \text{ pt}}$$

2. [5pts] Find the second derivative of $y = \sin^2(x)$. Simplify!

Solution: Rewrite y: $y = \sin^2(x) = (\sin x)^2$ To find the second derivative, we need to find the first derivative first. By Chain Rule, $y' = 2 \sin x \cdot \cos x$ [2pt]

To find the second derivative, take the derivative of y' . Note to Bule	o do so, you need to use Product
Rule. $y'' = 2\sin x \cdot \sin x + 2(-\cos x) \cdot \cos x$	[2pt]
$= 2\sin^2 x - 2\cos^2 x$	[1pt]