Name:

1. [5pts] Consider the function $f(x)=\frac{x^{5}}{10}+\frac{x^{4}}{4}+2$. Find the x-coordinate of all the inflection points.

Solution: First, we need to find the x-values for which $f^{\prime \prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x^{4}}{2}+x^{3} \\
f^{\prime \prime}(x) & =2 x^{3}+3 x^{2}=x^{2}(2 x+3)=0
\end{aligned} \quad[\mathbf{1} \mathbf{p t}]
$$

Hence $x=0,-3 / 2$. [1 pt]

Recall that an inflection point is a point where the concavity change. To determine so, we use a sign chart (i.e. number line) with $f^{\prime \prime}$.
\(\xrightarrow{\substack{-\frac{3}{2} \\

-2}}\)	+1	+

From the sign chart above, we see there is only one sign change, at $x=0$. i.e. The x -coordinate of the inflection point is 0 . [$\mathbf{1} \mathbf{~ p t}]$
2. [5pts] Consider the function $f(x)=2 \ln \left(x^{2}+1\right)$. Find the largest open interval(s) on which the function is both concave up and increasing.

Solution: Remember to determine increasing/decreasing we need to create a sign chart (i.e. number line) using f^{\prime}. So,

$$
f^{\prime}(x)=2 \cdot \frac{1}{x^{2}+1} \cdot 2 x=\frac{4 x}{x^{2}+1}=0 \quad[\mathbf{1} \mathbf{p t}]
$$

Hence $f^{\prime}(x)=0$ when $4 x=0$. Hence $x=0$ is a critical point. Now, we create a sign chart (i.e. number line) with f^{\prime}.

$$
\stackrel{\begin{array}{cc}
- & + \\
-1 & 1
\end{array}}{\stackrel{y}{4}} f^{\prime} \quad[\mathbf{1 ~ p t}]
$$

Remember to determine concavity we need to create a sign chart (i.e. number line) using $f^{\prime \prime}$. So,

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{4\left(x^{2}+1\right)-4 x(2 x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{4 x^{2}+4-8 x^{2}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{4-4 x^{2}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{4\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{4(1-x)(1+x)}{\left(x^{2}+1\right)^{2}}=0 \quad[\mathbf{1} \mathbf{t}]
\end{aligned}
$$

Hence $f^{\prime \prime}(x)=0$ when $x= \pm 1$. Now, we create a sign chart (i.e. number line) with $f^{\prime \prime}$.

Combining both number lines, we have the following information:

	$(-\infty,-1)$	$(-1,0)$	$(0,1)$	$(1, \infty)$
f^{\prime}	-	-	+	+
$f^{\prime \prime}$	-	+	+	-

[1 pt]

We want concave up (+ for $f^{\prime \prime}$) and increasing (+ for f^{\prime}), which only occurs at $(0,1)$. [$\left.\mathbf{1} \mathbf{~ p t}\right]$

