Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. Find the point(s) on the curve $y^{3}=x^{2}$ closest to the point $(0,4)$.

To receive full credit for this problem, you must show all 7 steps, as discussed in Lesson 24-26.
Hints:
(a) Step 2: Copy the graph from wolfram alpha
(b) Step 5: Determine the domain with the graph in Step 2.
(c) Step 6: When determining the absolute extrema, remember to check your endpoint(s) too.

Solution: Steps:

(1) Distance
(2) Graph

(3) $D=(x-0)^{2}+(y-4)^{2}=x^{2}+(y-4)^{2}$
(4) $y^{3}=x^{2}$
(5) Domain of $x:(-\infty, \infty)$

Domain of y : $[0, \infty)$
(6) Plug (4) into (3).

$$
\begin{aligned}
D & =x^{2}+(y-4)^{2} \\
& =y^{3}+y^{2}-8 y+16
\end{aligned}
$$

Take the derivative and set $=0$.

$$
\begin{gathered}
D^{\prime}=3 y^{2}+2 y-8=0 \\
3 y^{2}+6 y-4 y-8=0 \\
3 y(y+2)-4(y+2)=0 \\
(3 y-4)(y+2)=0 \\
y=4 / 3,-2
\end{gathered}
$$

Now we need to check for absolute minimum, via the Second Derivative Test. So,

$$
D^{\prime \prime}=6 y+2
$$

Note that $y=-2$ is not in domain of y. So we will use $x=0$ (because it is an endpoint) and $x=4 / 3$ for the Test.

$$
\begin{aligned}
D^{\prime \prime}(0) & =6(0)+2=2 \\
D^{\prime \prime}(4 / 3) & =6(4 / 3)+2=10
\end{aligned}
$$

Since 2 is the smallest of the two values, the absolute min happens there. i.e. The closest point on the graph to $(0,4)$ occurs at $y=0$.
(7) Recall what the problem is asking you "the point on the curve closest to the point $(0,4) . "$ If $y=0$, then

$$
\begin{aligned}
0^{3} & =x^{2} \\
x & =0
\end{aligned}
$$

So the point is $(0,0)$.

