Lessons 24-26: Optimization

Optimization Problems: Often this includes finding the maximum or minimum value of some function.

- e.g. The minimum time to make a certain journey,
- The minimum cost for constructing some object,
- The maximum profit to gain for a business, and so on.

How do we solve an optimization problem?

- Determine a function (known as objective function) that we need to maximize or minimize.
- Determine if there are some constraints on the variables. (The equations that describe the constraints are called the constraint equations.)
- If there are constraint equations, rewrite the objective function as a function of only one variable.
- Then we can solve for absolute maximum or minimum like we did before.

This space is left for you to take your own notes.

Recipe for Solving an Optimization Problem

Step 1: Identify what quantity you are trying to optimize.

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Identify the domain for the function you found in Step 4.

Step 6: Find the absolute maximum of the variable to be optimized on this domain.

$$
m: n
$$

Step 7: Reread the question and be sure you have answered exactly what was asked.

This space is left for you to take your own notes.
 Becureful

$$
w / \quad()
$$

$$
\text { or }[]
$$

\qquad
\qquad
\qquad

Let x and y be such \#s
(1) Product
(2) None
(3) $p=x y$
(4) $x+y=50$
(5) Domain x and y

$$
(-\infty, \infty)
$$

(6) Solve © (4) for y

$$
y=50-x
$$

Plug y into (3)

$$
\begin{aligned}
p & =x(56-x) \\
& =50 x-x^{2}
\end{aligned}
$$

Take the derivative
set $=0$

$$
\begin{gathered}
P^{\prime}=50-2 x=0 \\
x=25
\end{gathered}
$$

Check that $x=25$ gives abs max.
Since you have no
endpts, use $2^{\text {nd }}$
Derivatives.

$$
p^{\prime \prime}=-2<0
$$

\Rightarrow abs max
(7)

$$
\begin{aligned}
& x=25 \\
& y=50-x=25
\end{aligned}
$$

Example 3: A carpenter is building a rectangular room with a fixed perimeter of 54 feet. What are the dimensions of the largest room that can be built? What is its area?
(DAren
(2)

(3) $A=x y$
(4) $54=p=2 x+2 y$

$$
27=x+y
$$

(5) Domain x and $y ;(0,27)$

$$
\begin{aligned}
& x, y=0 \Rightarrow n_{0} \text { length } \\
& 27=0+y \\
& y=27 \Rightarrow \text { no width }
\end{aligned}
$$

(6) Solve (4) for y

$$
y=27-x
$$

Plug y into (3).

$$
\begin{aligned}
A & =x(27-x) \\
& =27 x-x^{2}
\end{aligned}
$$

Take levivative of
A set $=0$

$$
\begin{gathered}
A^{\prime}=27-2 x=0 \\
x=27 / 2
\end{gathered}
$$

$$
\max
$$

(7)

$$
\begin{aligned}
& x=27 / 2 \\
& y=27 / 2 \\
& A=\frac{729}{4}
\end{aligned}
$$

(1) Surface Area
(2)

(3) $5 A^{x}=x^{2}+4 x y$
(4) $S=V=x^{2} y$
(5) Domain x and y
(6) Solve (4) for y

$$
y=\frac{8}{x^{2}}
$$

Plug y into (3).

$$
\begin{aligned}
S A & =x^{2}+4 x\left(\frac{8}{x^{2}}\right) \\
& =x^{2}+\frac{32}{x} \\
& =x^{2}+32 x^{-1}
\end{aligned}
$$

Take derivative

$$
\begin{gathered}
\text { of } S A \text { set }=0 \\
(S A)^{\prime}=2 x-32 x^{-2}=0 \\
2 x-\frac{32}{x^{2}}=0 \\
\frac{2 x}{1}=\frac{32}{x^{2}}
\end{gathered}
$$

$$
\begin{aligned}
2 x^{3} & =32 \\
x^{3} & =16 \\
x & =2 \cdot 3 \sqrt{2}
\end{aligned}
$$

Check abs min

$$
\begin{aligned}
(5 A)^{\prime \prime} & =2-32(-2) x^{-3} \\
& =2+\frac{64}{x^{3}} \\
(5 A)^{\prime \prime} & \left.(2 \cdot 3 \sqrt{2})=2+\frac{64}{16}\right) 0 \\
& \Rightarrow \text { abs min }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } x=2 \cdot \sqrt[3]{2} \\
& y=\frac{8}{(2 \cdot \sqrt[3]{2})^{2}}=\sqrt[3]{2} \\
& 2 \cdot \sqrt[3]{2} \times 2 \cdot \sqrt[3]{2} \times \sqrt[3]{2} \\
& \text { l }
\end{aligned}
$$

(1) Volume

(3) $V=x(20-2 x)^{20}$
(4) No constraints
(5) Domain of $x:(0,10)$
(9)

$$
\begin{aligned}
& x=10 / 3 \\
& 20-2 x=40 / 3
\end{aligned}
$$

Dimension 1

$$
\begin{aligned}
& \frac{10}{3} \times \frac{40}{3} \times \frac{40}{3} \\
& \text { Volume }=\frac{1600}{27}
\end{aligned}
$$

(6)

$$
\begin{aligned}
& V= x\left(400-80 x+4 x^{2}\right) \\
&= 400 x-80 x^{2}+4 x^{3} \\
& V^{\prime}= 400-160 x+12 x^{2}=0 \\
& 4\left(100-40 x+3 x^{2}\right)=0 \\
& 4(10-3 x)(10-x)=0 \\
& \quad x=\frac{10}{3}, \text { by } \\
& \text { by } \\
& V^{\prime \prime}=-160+24 x \\
& V^{\prime \prime}(10 / 3)=-80<0 \Rightarrow a b s \text { max }
\end{aligned}
$$

HW 24.6: You are designing a paper with an area of $400 \mathrm{~cm}^{2}$ to contain a printing area in the middle and have the margins of 2 cm at the top and bottom and 4 cm on each side. Find the largest possible printing area.
(1) Area
(6) Solve (4) for y
(2)

(3) $A=x y$
(4) $400=(x+4)(y+8)$
(5) If $x=0$,

$$
\begin{aligned}
400 & =(0+4)(y+8) \\
460 & =4(y+8) \\
100 & =y+8 \\
y & =92
\end{aligned}
$$

If $y=0$

$$
\begin{aligned}
400 & =(x+4)(0+8) \\
400 & =8(x+4) \\
50 & =x+4 \\
x & =46
\end{aligned}
$$

Domain $x(0,46)$
Domain y $(0,92)$

$$
\begin{aligned}
& \frac{400}{x+4}=y+8 \\
& \frac{400}{x+4}-8=y
\end{aligned}
$$

Plug y into (3)

$$
\begin{aligned}
A & =x\left(\frac{400}{x+4}-8\right) \\
& =\frac{400 x}{x+4}-8 x
\end{aligned}
$$

$$
A^{\prime}=\frac{1600}{(x+4)^{2}}-8=0
$$

$$
\frac{1600}{(x+4)^{2}}=\frac{8}{1}
$$

$$
8(x+4)^{2}=1600
$$

$$
(x+4)^{2}=200
$$

$$
x+4= \pm 10 \sqrt{2}
$$

$$
\begin{equation*}
x=-4 * 10 \sqrt{2} \tag{L}
\end{equation*}
$$

$$
\begin{aligned}
& A^{\prime}=1600(x+4)^{-2}-8 \\
& A^{\prime \prime}=-3200(x+4)^{-3}
\end{aligned}
$$

HW 24.6: You are designing a paper with an area of $400 \mathrm{~cm}^{2}$ to contain a printing area in the middle and have the margins of 2 cm at the top and bottom and 4 cm on each side. Find the largest possible printing area.

$$
A^{\prime \prime}(10 \sqrt{2}-4)=\frac{-3200}{(10 \sqrt{2})^{3}}<0 \Rightarrow \operatorname{Max}
$$

(7)

$$
\begin{aligned}
& x=10 \sqrt{2}-4 \\
& y=\frac{400}{x+4}-8=\frac{400}{10 \sqrt{2}-4+4}-8=20 \sqrt{2}-8 \\
& A=x y=(10 \sqrt{2}-4)(26 \sqrt{2}-8) \approx 206 \mathrm{~cm}^{3}
\end{aligned}
$$ rectangular window. Find the dimensions of a Norman window of maximum area if the total perimeter is 10 feet.

(1) Area
(2)

(3) $A=\frac{1}{2} \pi r^{2}+2 r w$
(4) $10=p=\pi r+2 w+2 r$
(5) If $r=0,10=2 w$

$$
w=5
$$

If $\omega=0,10=\pi r+2 r$

$$
\begin{aligned}
10 & =r(\pi+2) \\
r & =\frac{10}{\pi+2}
\end{aligned}
$$

Domain re $(0,10 / \pi+2)$
Domain w: $(0,5)$
(6) Solve (4) for w

$$
\begin{aligned}
& 10-2 r-\pi r=2 w \\
& \frac{10-2 r-\pi r}{2}=w
\end{aligned}
$$

$$
\begin{aligned}
& A= \frac{1}{2} \pi r^{2}+10 r-2 r^{2}-\pi r^{2} \\
& A^{\prime}= \frac{2 \pi r}{2} r+10-4 r-2 \pi r \\
&= \pi r+10-4 r-2 \pi r \\
&= 10-4 r-\pi r \\
&= 10-r(4+\pi)=0 \\
& 10=r(4+\pi) \\
& r=\frac{10}{4+\pi} \\
& A^{\prime \prime}=-(4+\pi)<0 \Rightarrow \max
\end{aligned}
$$

$$
\text { (7) } r=\frac{10}{4+\pi}
$$

$$
w=\frac{10}{4+\pi}
$$

Pug w into (3)

$$
A=\frac{1}{2} \pi r^{2}+2 r\left(\frac{10-2 r-\pi r}{2}\right)
$$ material for the top costs $\$ 1$ per square foot, determine the minimum cost for constructing such a box.

(1) Cost, C
(2)

(3)

$$
\begin{aligned}
c & =2\left(x^{2}\right)+4(4 x y)+1\left(x^{2}\right) \\
& =3 x^{2}+16 x y
\end{aligned}
$$

(4) $800=V=x^{2} y$
(5) Domain $x \& y$. $(0, \infty)$
(6) Solve $\in D$ for y

$$
\frac{800}{x^{2}}=y
$$

Plug y in (3)

$$
\begin{aligned}
c & =3 x^{2}+16 x\left(\frac{800}{x^{2}}\right) \\
= & 3 x^{2}+\frac{16(800)}{x} \\
= & 3 x^{2}+12800 x^{-1} \\
c^{\prime}= & 6 x-12800 x^{-2}=0 \\
& 6 x-\frac{12800}{x^{2}}=0
\end{aligned}
$$

$$
\frac{6 x}{1}=\frac{12800}{x^{2}}
$$

$$
6 x_{0}^{3}=12800
$$

$$
x^{3}=6400 / 3
$$

$$
x=4 \cdot \sqrt[3]{100 / 3}
$$

$$
\begin{aligned}
c^{\prime \prime} & =6+25600 x^{-3} \\
& =6+\frac{25600}{x^{3}}
\end{aligned}
$$

$$
c^{\prime \prime}(4 \cdot \sqrt[3]{100 / 3})>0
$$

$$
\Rightarrow \min
$$

(7)

$$
\begin{aligned}
& x=4 \cdot 3 \sqrt{100 / 3} \\
& y=\frac{800}{16(10 y / 3)^{2 / 3}} \\
& c=\$ 62.14
\end{aligned}
$$

Example 7: A company's marketing department has determined that if their product is sold at the price of p dollars per unit, they can sell $q=2400-200 p$ units. Each unit costs $\$ 5$ to make.

1. What price, p, should the company charge to maximize their revenue?

Example 7: A company's marketing department has determined that if their product is sold at the price of p dollars per unit, they can sell $q=2400-200 p$ units. Each unit costs $\$ 5$ to make.
2. What price, p, should the company charge to maximize their profit?

Example 8: Find the point on the graph of $f(x)=2 x+4$ that is the closest to the point $(1,3)$.

HW 25.4: For a cylinder with a surface area of 20 , what is the maximum volume that it can have? Recall that the volume of a cylinder is $\pi r^{2} h$ and the surface area is $2 \pi r h+2 \pi r^{2}$ where r is the radius and h is the height.

HW 26.1: A rectangular recreational field needs to be built outside of a gymnasium. Three walls of fencing are needed and the fourth wall is to be a wall of the gymnasium itself. The ideal area for such a field is exactly $490000 \mathrm{ft}^{2}$. In order to minimize costs, it is necessary to construct the fencing using the least amount of material possible. Assuming that the material used in the fencing costs $\$ 25 / \mathrm{ft}$, what is the least amount of money needed to build this fence of ideal area?

