Lessons 24-26: Optimization

Optimization Problems: Often this includes finding the maximum or minimum value of some function.

- e.g. The minimum time to make a certain journey,
- The minimum cost for constructing some object,
- The maximum profit to gain for a business, and so on.

How do we solve an optimization problem?

- Determine a function (**known as objective function**) that we need to maximize or minimize.
- Determine if there are some constraints on the variables. (The equations that describe the constraints are called **the constraint equations**.)
 - o If there are constraint equations, rewrite the **objective function** as a function of only one variable.
- This space is left for you to take your own notes.

Then we can solve for absolute maximum or minimum like we did before.

Recipe for Solving an Optimization Problem

- Step 1: Identify what quantity you are trying to optimize.
- **Step 2:** Draw a picture (if applicable), corresponding to the problem, and label it with your variables.
- **Step 3:** Express the variable to be optimized as a function of the variables you used in Step 2.
- **Step 4:** Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.
- **Step 5:** Identify the domain for the function you found in Step 4.
- **Step 6:** Find the absolute maximum of the variable to be optimized on this domain. $M \cdot M$
- Step 7: Reread the question and be sure you have answered exactly what was asked.

This space is left for you to take your own notes.

)	Becareful w/ () or []
	e.g. No negatives for \$55 or
	lengths

Example 2: Of all the numbers whose sum is 50, find the two that have the maximum product.

Let x and y be such #5. (1) Product 2 None 3 P= XY $4) \times + y = 50$ 6 Domain X and y: $(-\infty,\infty)$ 6 Solve 1 for y. y = 50 -X Plug y into 3 P= x(50-x) $=5/0\times-\times^2$ Take the derivative set = 0. $P' = 50 - \lambda x = 0$ X=25 Check that x=25 gives abs max. Since you have no endpts, use and Derivatives. P"=-2 (0

=) abs max

$$\begin{array}{ccc}
\text{Two that have the maximum product.} \\
\text{The product.}$$

Example 3: A carpenter is building a rectangular room with a fixed perimeter of 54 feet. What are the dimensions of the largest room that can be built? What is its area?

$$A'' = -2 < 0 = 2abs$$

$$\max$$

$$A'' = -2 < 0 = 2abs$$

$$\max$$

$$A = 27/2$$

$$A = 27/2$$

$$A = 729$$

Example 4: An open-top box with a square base is to have a volume of 8 cubic feet. Find the dimensions of the box that can be made with the least amount of material.

the least amount of material.

$$2 \times^3 = 32$$

$$\times^3 = 16$$

$$\times = 2 \cdot 3\sqrt{2}$$
Check abs min
$$(5A)'' = 2 - 32(-2) \times -3$$

$$= 2 + 64$$

$$\times^3 = 2 \cdot 3\sqrt{2}$$
(SA)''(2 \(3\sqrt{2}\)) = 2 + 64
\(76\)
$$= 2 \cdot 3\sqrt{2}$$

$$= 2 \cdot 3\sqrt{2}$$

$$= 2 \cdot 3\sqrt{2}$$

$$= 2 \cdot 3\sqrt{2}$$

$$= 3 \cdot 3\sqrt{2$$

Example 1: From a thin piece of cardboard 20 in by 20 in, square corners are cut out so that the sides can be folded up to make a box. What dimensions will yield a box of maximum volume?

What is the maximum volume?

(1) Volume

(2)
$$\sqrt{20}$$

(3) $\sqrt{20}$

(4) No constraints

(5) Domain of x: (0/10)

 $\sqrt{20}$
 $\sqrt{20}$

$$40/3$$

$$20-2x = 40/3$$
Dimensions
$$\frac{10}{3} \times \frac{40}{3} \times \frac{40}{3}$$
Volume = $\frac{1600}{27}$

V"(10/3) = -80(0 => abs max

 $V'' = -160 + 24 \times$

<u>HW 24.6:</u> You are designing a paper with an area of 400 cm^2 to contain a printing area in the middle and have the margins of 2 cm at the top and bottom and 4 cm on each side. Find the largest possible printing area.

Area

$$\begin{array}{l}
\text{Solve } & \text{for } y \\
\frac{400}{x44} = y + 8 \\
\frac{400}{x+4} - 8 = y \\
\text{Plug } y \text{ into } & 3 \\
A = x \left(\frac{400}{x+4} - 8 \right) \\
= \frac{1600}{(x+4)^2} = 8 = 0 \\
\frac{1600}{(x+4)^2} = \frac{8}{1000} \\
(x+4)^2 = \frac{1600}{(x+4)^2} = \frac{8}{1000} \\
x = -4 \neq 1000
\end{array}$$

$$\begin{array}{l}
\text{A'= } & \frac{1600}{(600)} = \frac{8}{1000} \\
x = -4 \neq 1000
\end{array}$$

$$\begin{array}{l}
\text{A'= } & \frac{1600}{(600)} = \frac{8}{1000} \\
x = -4 \neq 1000
\end{array}$$

 $A'' = -3260(x+4)^{-3}$

<u>HW 24.6:</u> You are designing a paper with an area of 400 cm^2 to contain a printing area in the middle and have the margins of 2 cm at the top and bottom and 4 cm on each side. Find the largest possible printing area.

$$A''(10\sqrt{2}-4)=\frac{-3200}{(10\sqrt{2})^3}(0)$$
 Max

Example 5: A Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window. Find the dimensions of a Norman window of maximum area if the total

perimeter is 10 feet.

5) If
$$r=0$$
, $lo=2w$
 $w=5$

If $w=0$, $lo=Tr+2r$
 $lo=r(Tr+2)$
 $r=\frac{lo}{Tr+2}$
Domain $r:(0,1)$
 $r=\frac{lo}{Tr+2}$
Domain $w:(0,5)$

6 Solve 9 for
$$W$$
.
 $10-2r-\tilde{1}\tilde{1}r=2W$

$$\frac{10-2r-\tilde{1}\tilde{1}r}{2}=W$$

Puy winto 3)
$$A = \frac{1}{2}\pi r^{2} + 2r\left(\frac{10-2r-\pi r}{2}\right)$$

$$A = \frac{1}{2}mr^{2} + 10r - 2r^{2} - mr^{2}$$

$$A' = \frac{2\pi}{2}r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi - \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 - 4r - 2\pi r$$

$$= \pi r + 10 -$$

Example 6: A rectangular box is to have a square base and a volume of 800 ft^3 . If the material for the base costs \$2 per square foot, the material for the sides costs \$4 per square foot, and the material for the top costs \$1 per square foot, determine the minimum cost for constructing such a

box. (1) Cost, C $3 = 2(x^{2}) + 4(4xy) + 1(x^{2})$ $=3x^{2}+16xy$ (4) 200= V= x2 Y 5) Domain X& y. (0,00) 6 Solve & for y $\frac{800}{800} = 4$ Plug y in 3 $C = 3 \times {}^{2} + 16 \times \left(\frac{800}{\times^{2}} \right)$ $=3x_{3}+19(800)$ $=3x^2+12800x^{-1}$ $C' = 6x - 12800x^{-2} = 0$ 6x - 12800 = 0

$$\frac{6 \times = 12800}{1 \times 3} = 12800$$

$$\times^{3} = 6400/3$$

$$\times = 4 \cdot 3 \cdot 100/3$$

$$= 6 + 25600$$

$$\times^{3} = 6400 \times 3$$

$$= 6 + 25600$$

$$\times^{3} = 6400/3$$

$$= 6 + 25600$$

$$\times^{3} = 6400/3$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6 + 25600$$

$$= 6$$

Example 7: A company's marketing department has determined that if their product is sold at the price of p dollars per unit, they can sell q = 2400 - 200p units. Each unit costs \$5 to make.

1. What price, p, should the company charge to maximize their revenue?

(Revenue

$$R' = 2400 - 400p = 0$$
 $p = 6$

Example 7: A company's marketing department has determined that if their product is sold at the price of p dollars per unit, they can sell q = 2400 - 200p units. Each unit costs \$5 to make.

2. What price, p, should the company charge to maximize their profit?

$$Profit$$
 N/A
 $P=R-C$
 $R=pq$
 $C=5q$
 $P=2400-200p$
 $Pamain p: [0/00]$
 $P=2400-200p$
 $P=2400-200p$
 $P=2400-200p$
 $P=2400-200p$
 $P=2400-200p$
 $P=200(p-12)(p-5)$
 $P=200(p-12)(p-5)$
 $P=200(2p-17)=0$
 $P=172=18.50$
 $P=188,50$

Example 8: Find the point on the graph of f(x) = 2x + 4 that is the closest to the point (1,3).

$$9 = 2x + 4$$

$$5 Domain xy: (-\infty, -\infty)$$

(Look @ the graph)

6 Plug G into 3.

$$D = (x-1)^{2} + (2x+4-3)^{2}$$

$$= (x-1)^{2} + (2x+1)^{2}$$

$$= x^{2} - 2x + 1 + 4x^{2} + 4x + 1$$

$$= 5x^{2} + 2x + 2$$

Take derivative set =0
$$0' = 10x + 2 = 0$$

$$x = -45$$

$$4) x = -1/5$$

 $y = 2x + 4 = \frac{18}{5}$

$$\left(-\frac{1}{5}, \frac{18}{5}\right)$$

HW 25.4: For a cylinder with a surface area of 20, what is the maximum volume that it can have? Recall that the volume of a cylinder is $\pi r^2 h$ and the surface area is $2\pi rh + 2\pi r^2$ where r is the radius and h is the height.

1 Volume

(1)
$$20 = 5A = 2\pi rh + 2\pi r^{2}$$

b/c real world problem

$$h = 10 - 1/r$$

$$V = Xr^{2} \left(\frac{10 - 11r^{2}}{X} \right)$$

$$V = r(10 - 11r^{2})$$

$$= 10r - 11r^{3}$$

$$Take derivative set = 0$$

$$V = 10 - 3tr^{2} = 0$$

$$V = \sqrt{3tr^{2}} = 0$$

HW 26.1: A rectangular recreational field needs to be built outside of a gymnasium. Three walls of fencing are needed and the fourth wall is to be a wall of the gymnasium itself. The ideal area for such a field is exactly $490000ft^2$. In order to minimize costs, it is necessary to construct the fencing using the least amount of material possible. Assuming that the material used in the fencing costs \$25/ft, what is the least amount of money needed to build this fence of ideal area?