Lessons 24-26: Optimization

Optimization Problems: Often this includes finding the maximum or minimum value of some
function.

e ¢.g. The minimum time to make a certain journey,
e The minimum cost for constructing some object,
¢ The maximum profit to gain for a business, and so on.

How do we solve an optimization problem?

e Determine a function (known as objective function) that we need to maximize or
minimize.

e Determine if there are some constraints on the variables. (The equations that describe the

constraints are called the constraint equations.)
o Ifthere are constraint equations, rewrite the objective function as a function of

only one variable.
e Then we can solve for absolute maximum or minimum like we did before.
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Recipe for Solving an Optimization Problem

Step 1: Identify what quantity you are trying to optimize.

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your
variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized
a function of just one of the variables from Step 2.

Step 5: Identify the domain for the function you found in Step 4.

Step 6: Find the absolute maximum of the variable to be optimized on this domain.
MW
Step 7: Reread the question and be sure you have answered exactly what was asked.

This space is left for you to take your own notes.
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Example 2: Of all the numbers whose sum is 50, find the two that have the maximum product.
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Example 3: A carpenter is building a rectangular room with a fixed perimeter of 54 feet. What
are the dimensions of the largest room that can be built? What is its area?
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Example 4: An open-top box with a square ba

se 1s to have a volume of 8 cubic feet. Find the

dimensions of the box that can be made with the least amount of material.
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Example 1: From a thin piece of cardboard 20 in by 20 in, square corners are cut out so that the
sides can be folded up to make a box. What dimensions will yield a box of maximum volume?
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HW 24.6: You are designing a paper with an area of 400 ¢m? to contain a printing area in the
middle and have the margins of 2 cm at the top and bottom and 4 cm on each side. Find the

largest possible printing area.
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HW 24.6: You are designing a paper with an area of 400 ¢m? to contain a printing area in the
middle and have the margins of 2 cm at the top and bottom and 4 cm on each side. Find the

largest possible printing area.
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Example 5: A Norman window is constructed by adjoining a semicircle to the top of an ordinary
rectangular window. Find the dimensions of a Norman window of maximum area if the total

perimeter is 10 feet.
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Example 6: A rectangular box is to have a square base and a volume of 800 ft°. If the material
for the base costs $2 per square foot, the material for the sides costs $4 per square foot, and the
material for the top costs $1 per square foot, determine the minimum cost for constructing such a
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Example 7: A company’s marketing department has determined that if their product is sold at
the price of p dollars per unit, they can sell g = 2400 — 200p units. Each unit costs $5 to make.
1. What price, p, should the company charge to maximize their revenue?
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Example 7: A company’s marketing department has determined that if their product is sold at

the price of p dollars per unit, they can sell g = 2400 — 200p units. Each unit costs $5 to make.
2. What price, p, should the company charge to maximize their profit?
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Example 8: Find the point on the graph of f(x) = 2x + 4 that is the closest to the point (/,3).
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HW 25.4: For a cylinder with a surface area of 20, what is the maximum volume that it can
have? Recall that the volume of a cylinder is rr2h and the surface area is 2nrh + 2nr2 where r
is the radius and h is the height.
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HW 26.1: A rectangular recreational field needs to be built outside of a gymnasium. Three walls
of fencing are needed and the fourth wall is to be a wall of the gymnasium itself. The ideal area
for such a field is exactly 490000/t2. In order to minimize costs, it is necessary to construct the
fencing using the least amount of material possible. Assuming that the material used in the
fencing costs $25/ft, what is the least amount of money needed to build this fence of ideal area?
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