Lesson 33: The Fundamental Theorem of Calculus (FTC) ^ Part 2

Lesson 33: The Fundamental Theorem of Calculus (FTC) Pt2

$$\frac{(FTC) Pt^2}{\text{Recull } \int_a^b f(x) dx = F(x) \int_a^b = F(b) - F(a)$$

Well the antiderivative of g'(x) is g(x). So $\sum_{a}^{b} g'(x)dx = g(x) \Big|_{a}^{b} = g(b) - g(a)$

Ex 5: The growth rate of the population of a city is

$$b(+) = -200(3-+)$$

where t is time in years. How does the population change t = 1 year to t = 3 years?

$$\int_{1}^{3} P'(+) dt = \int_{1}^{3} -500(3-t) dt$$

$$= -500 \left[3 + -\frac{1}{2} \right]_{1}^{3}$$

$$= -500 \left[(3(3) - \frac{3}{2}) - (3(1) - \frac{1}{2}) \right]$$

$$= -500 \left(6 - \frac{8}{2} \right)$$

$$= -500 \left(6 - 4 \right)$$

$$= \left(1000 \right)$$

Recall

- Displacement is the difference in position.

- It could be positive or negative.

- The sign indicates the direction.

By FTC,

$$5^{b}v(+)d+=5^{b}s'(+)d+=5(+)^{b}a$$

 $=s(b)-s(a)$

Ex 6: The velocity function, in feet per second, is given for a particle moving along a straight line $\sqrt{(+)} = -|0++20|$ where t is in seconds.

(a) Find the displacement from t = 0 to t = 2 seconds.

$$\int_{0}^{2} v(t)dt = \int_{0}^{2} \left[-10+20\right]dt$$

$$= \left(-\frac{10+2}{2}+20+\right)\Big|_{0}^{2}$$

$$= \left(-5+2+20+\right)\Big|_{0}^{2}$$

$$= \left(-5(2)^{2}+20(2)\right)-\left(-5(4)^{2}+20(0)\right)$$

$$= -20+40=20$$

Ex 6: The velocity function, in feet per second, is given for a particle moving along a straight line

$$v(t) = -10t + 20$$

where t is in seconds.

(b) Find the displacement from t = 0 to t = 4 seconds.

HW 33.4: A faucet is turned on at 9:00 am and water starts to flow into a tank at the rate of

where t is time in hours after 9:00 am and the rate r(t) is in cubic feet per hour.

(a) How much water, in cubic feet, flows into the tank from 10:00 am to 1:00 pm?

9:00am =) t=0
10:00am =) t=1
1:00pm =) t=1
= 6
$$\frac{3}{2}$$
 $\frac{3}{2}$ $\frac{4}{2}$ $\frac{4}{2}$ $\frac{3}{2}$ $\frac{4}{2}$ $\frac{4}{2}$ $\frac{3}{2}$ $\frac{4}{2}$ $\frac{4}$

 $=4.2^{3}-4(1)$

HW 33.4: A faucet is turned on at 9:00 am and water starts to flow into a tank at the rate of

where t is time in hours after 9:00 am and the rate r(t) is in cubic feet per hour.

(b) How many hours after 9:00 am will there be 121 cubic feet of water in the tank?

Solve
$$\int_{0}^{x} 6+\frac{1}{2} dt = |2|$$
 for x .
 $|3/2| = \int_{0}^{x} 6+\frac{1}{2} dt = |2|$ for x .
 $|2| = \int_{0}^{x} 6+\frac{1}{2} dt = |2|$ for x .
 $|2| = \left(\frac{3}{2}\right)^{2} = 4x^{3/2} - 4(0)^{3/2}$
 $|2| = 4x^{3/2}$
 $|2| = 4x^{3/2}$
 $|2| = \frac{12}{4}$