Name: \qquad

1. [5 pts] Let R be the region shown below. Set up the integral that computes the VOLUME as R is rotated around the x -axis.

DON'T COMPUTE IT!!!

Solution: Using the graph, we can see both lines intersect at $x=0,2$ which will be our bounds. [1 pt].

We can also this is a WASHER PROBLEM. So the top function is $y=-x^{2}+3 x$ and the bottom function is $y=x$. [2 pts].

Hence if we put it all together

$$
\text { Volume }=\pi \int_{0}^{2}\left(-x^{2}+3 x\right)^{2}-(x)^{2} d x \quad[\mathbf{2} \mathbf{p t s}]
$$

2. [5 pts] Set up the integral that computes the VOLUME of the region bounded by

$$
y=\sqrt{4-x}, \quad y=0, \quad x=0
$$

around the y-axis.

DON'T COMPUTE IT!!!

Note this a dy-problem because we are rotating around the y-axis. [1pt].

After drawing the image on the right, we see that the bounds of our integral is $y=0,2$ [$\mathbf{1}$ $\mathrm{pt}]$.

We can also see this is a DISK PROBLEM and a dy Problem. So we need to solve $y=\sqrt{4-x}$ for x. [1 pt]

$$
\begin{aligned}
& y=\sqrt{4-x} \\
& y^{2}=4-x \\
& x=4-y^{2}
\end{aligned}
$$

Hence if we put it all together

$$
\text { Volume }=\pi \int_{0}^{2}\left(4-y^{2}\right)^{2} d y[\mathbf{2} \mathbf{p t s}]
$$

Name: \qquad

1. [5 pts] Let R be the region shown below. Set up the integral that computes the VOLUME as R is rotated around the $x=4$.

DON'T COMPUTE IT!!!

Solution: If we reflect the region given in the graph across the line $x=4$, we can see that this problem is a DISK PROBLEM. So, we need to solve $y=\sqrt{x}$ for x. [1 pt]

$$
y=\sqrt{x} \quad \Longleftrightarrow y^{2}=x
$$

Since we are rotating around $x=4$, our integral will be a dy-problem. [1 pt]

Using the graph, we can see our bounds will be 0 to 2 . [$\mathbf{1} \mathbf{p t}]$.

Hence if we put it all together

$$
\text { Volume }=\pi \int_{0}^{2}\left(y^{2}-4\right)^{2} d y \quad[\mathbf{2} \mathbf{p t s}]
$$

2. [5 pts] Using the SHELL METHOD, set up the integral that computes the VOLUME of the region bounded by

$$
x=y^{2}-2 y-8, \quad \text { and } \quad x=0
$$

around the x-axis.

DON'T COMPUTE IT!!!

Solution: By the Shell Method, this a dy-problem because we are rotating around the x -axis. [1pt]

Next let's find the bounds of the integral by setting the equations equal. [$\mathbf{2} \mathbf{~ p t s}$]

$$
\begin{gathered}
0=x=y^{2}-2 y-8 \\
0=(y+2)(y-4) \\
y=-2,4
\end{gathered}
$$

Hence if we put it all together

$$
\text { Volume }=\int_{-2}^{4} 2 \pi y\left(y^{2}-2 y-8\right) d y[\mathbf{2} \mathbf{p t s}]
$$

