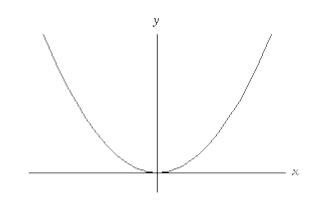
$e^{\ln x} = exp[\ln x] = x$ $\ln[e^{x}] = x$

Remember $\sin^2 x = [\sin x]^2 \neq \sin(x^2)$ Logarithmic Properties (a) $lne^{x} = x$ \mathbb{D} $\ln(ab) = \ln(a) + \ln(b)$ $\Im \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$ $\partial \ln(a^{x}) = x \ln(a)$ a-c method for factoring ex. $4x^2 - 4x = 3$ First find $ac = 4 \cdot (-3) = -12$ Next list all factors of ac=-12 12 2 6 4 The idea is to add the factors to yield b=-4 Note since AC = - 12 and b = -4 the largest factor gets a negative. So $a_{c} = -12$ 1-12=-11 2 - 6 = -4 = 63 - 4 = -1

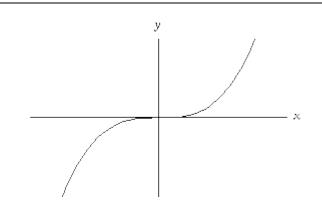
Rewrite the middle term with the numbers in the pink box.


 $4x^2 - 4x - 3 = 4x^2 + 2x - 6x - 3$

Now factor by grouping. $= 2 \times (2 \times +1) - 3(2 \times +1)$ Check that the parenthesis match. $= (2 \times -3)(2 \times +1)$

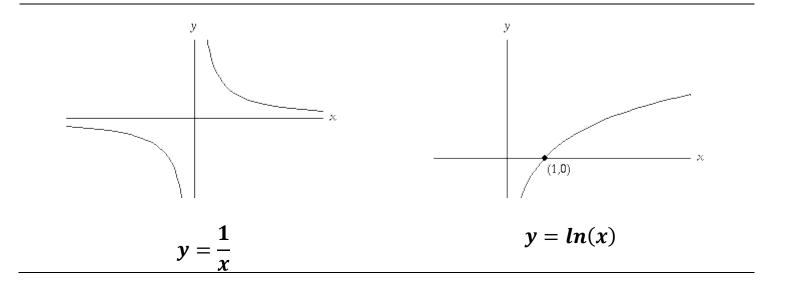
MA 16020 LESSON 12: AREA BETWEEN TWO CURVES (ALGEBRA REVIEW)

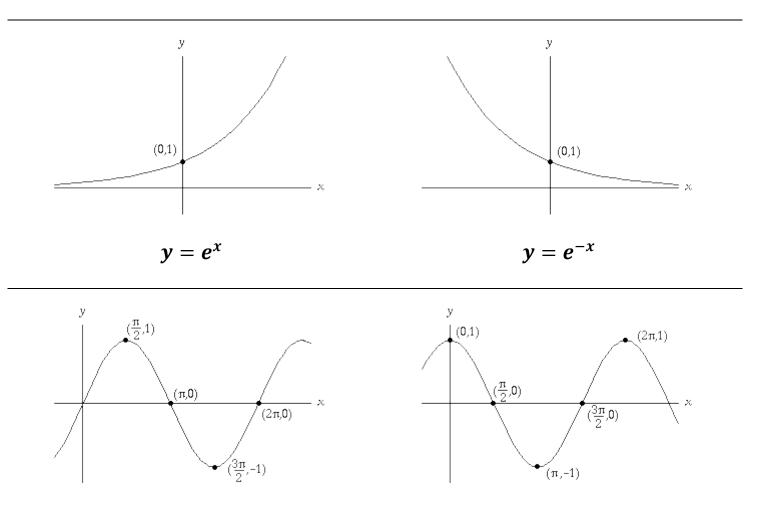
Common Graphs:



y = mx + b

у





 \mathbf{X}

y = sin(x)

y = cos(x)

(OPTIONAL HOMEWORK): Graph the following functions

1. $y = -\frac{2}{5}x + 3$	6. $y = e^{2t}$
2. $y = 2x^2 + 1$	7. $y = e^{5t}$
3. $y = -x^2 + 7$	8. $y = cos(x) + 3$
4. $y = \sqrt{x+3}$	9. $y = -\sin(x)$
5. $y = \frac{x}{12}$	10. $y = x^2 + 2x + 1$

* Note for 10. Rewrite y using the Perfect Square Formula.