Reminders

O WEDNESDAY QUIZ 5 on
O Volume of Revolutions
O Disks (Lesson 14)
O Washers (Lesson 15)

ONEXT FRIDAY NO CLASS

1

MA 16020: Lesson 16 Volume By Revolution Rotation around any non-Axis

By Alexandra Cuadra

RECAP of Formulas from Lesson 14 and 15

For rotation around x-axis:
O Disk Method:

$$
V=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

O Washer Method:

$$
V=\pi \int_{a}^{b}\left(R^{2}-r^{2}\right) d x
$$

For rotation around y-axis:
O Disk Method:

$$
V=\pi \int_{c}^{d}[g(y)]^{2} d y
$$

O Washer Method:

$$
V=\pi \int_{c}^{d}\left(R^{2}-r^{2}\right) d y
$$

RECAP: When do we apply Disk Method or Washer Method?

O When the region "hugs" the axis of rotation \Rightarrow Disk Method

O When there is a "gap" between the region and axis of rotation
\Rightarrow Washer Method

Today's Lecłure

O In the previous two lessons, we looked at rotations around the x-axis or y-axis.

O Today we are going to rotate about ANY arbitrary axis.
o Don't worry. We are going to limit ourselves to any vertical or horizontal line parallel to the x-axis or y-axis

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
A) the x-axis

Draw the region.

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
A) the x-axis

7

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
A) the x-axis

https://www.geogebra.org/m/wri2euhf

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around

$$
\begin{aligned}
& \text { A) the }(\text {-xis }) \Rightarrow y=\text { ? and } T_{o p} \text {, Broom }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Top } \Rightarrow x^{2} y=4 \Rightarrow y=\frac{4}{x^{2}} \\
& \text { Bottom } \Rightarrow y=1 \\
& V=\pi \int\left(\frac{4}{x^{2}}\right)^{2}-1^{2} d x
\end{aligned}
$$

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
A) the x-axis Now the bounds. We are
 given the smallest on $x=1$ next find the other by putting

$$
y=1 \text { into } x^{2} y=4
$$

https://www.geogebra.org/m/wri2euhf

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
A) the x-axis

$$
x= \pm 2
$$

https://www.geogebra.org/m/wri2euhf

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R ground
A) the x-axis

https://www.geogebra.org/m/wri2euhf

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
B) the y-axis

Draw the region.

https://www.geogebra.org/m/wzbm2xbt
13

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
B) the y-axis

Rotation about y-axis

https://www.geogebra.org/m/wzbm2xbt

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
B) the y-axis

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
B) the y-axis

https://www.geogebra.org/m/wzbm2xbt

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around Now the bounds we are given
B) the y-axis the smallest one
 Next Find

putting

https://www.geogebra.org/m/wzbm2xbt
17

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
B) the y-axis

Let's Backłrack a Bit...

Remember when we first described Washers, we talked about farthest and closest.

Consider the case of x-axis rotation.
In terms of distance,

- R is the length of Top Function away from x-axis
- i.e. $\mathrm{R}=f$
- r is the length of Bottom Function away from x-axis

$$
\text { - i.e. } r=g
$$

When rotating around the line

 $y=e \ldots$O So, what is the distance between f (or g) and $y=e$?
O Distance $\mathrm{b} / \mathrm{w} f$ and $y=e$ is

$$
R=f-e
$$

O Distance $\mathrm{b} / \mathrm{w} g$ and $y=e$ is

$$
r=g-e
$$

O Note this formula is also true for the x-axis case, because the x axis is simply the line $y=0$

GOOD NEWS

 EVERYBODY: When rotating around the line $x=e .$.O The same formulas, for R and r, from the case of $y=e$ applies.
O So, the distance between f (or g) and $x=e$ are as follows:
○ $R=f-e$
$r=g-e$

O Note that though we did all this calculation for the Washer Problems; this also applies for the Disk Problems.

21

Rotation around any non-Axis Formulas

For rotation around the line $y=e$:
O Disk Method:

$$
V=\pi \int_{a}^{b}[f(x)-e]^{2} d x
$$

For rotation around the line $x=e$:
O Disk Method:

$$
V=\pi \int_{c}^{d}[g(y)-e]^{2} d y
$$

O Washer Method:

$$
V=\pi \int_{c}^{d}\left((R-e)^{2}-(r-e)^{2}\right) d y
$$

Note: That these formulas work for the case of x -axis $(y=0)$ and y -axis $(x=0)$.

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
C) the line $y=1$

Draw the region.

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
C) the line $y=1$

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
C) the line $y=1$

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
C) the line $y=1$

https://www.geogebra.org/m/n2jzwh8f

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around Ax problem
C) the line $=1$

But we
Jaw this is now
 a disk problem so

Note our bound are the

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
C) the line $y=1$

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
D) the line $x=1$

Draw the region.

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
D) the line $x=1$

Rotation about $x=1$

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
D) the line $x=1$

Furthermore, 3-D

https://www.geogebra.org/m/cppyhnqk
31

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
D) the line $x=1$

$$
\begin{aligned}
& \text { dy problem } \\
& \text { Bur we sw o this is now }
\end{aligned}
$$

$$
\begin{aligned}
& \text { a diu problem } S 0 \\
& \quad=\pi \int_{1}^{4}\left(\sqrt{\frac{4}{y}}-1\right)^{2} d y
\end{aligned}
$$

Note our bounds are the
same as

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around

$$
2 \sqrt{\frac{4}{y}}
$$

D) the line $x=1$

$$
=\pi \int_{1}^{4}\left(\frac{4}{y}\right.
$$

$$
-\frac{2 \cdot 2}{2}
$$

 $\left.\frac{2 \cdot 2}{y^{3}}+1\right)$ d $>$

https://www.geogebra.org/m/cppyhnqk

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
D) the line $x=1$

Example 2: Find the volume of the solid generated by revolving the given region about the line $x=6$:

$$
y=\sqrt{x}, \quad y=0, \quad x=4
$$

Draw the region.

35

Example 2: Find the volume of the solid generated by revolving the given region about the line $x=6$:

$$
y=\sqrt{x}, \quad y=0, \quad x=4
$$

Rotation about $x=6$

Example 2: Find the volume of the solid generated by revolving the given region about the line $x=6$:

$$
y=\sqrt{x}, \quad y=0, \quad x=4
$$

$x=b \Rightarrow d y$ problem

$$
\text { Roblem } \quad \text { Right } \Rightarrow y=\sqrt{x} \Rightarrow x=y^{2}
$$

$$
\text { Left } \Rightarrow x=4
$$

BUT we are going

$$
\text { Right } \Rightarrow x=y^{2}-6 \text { Left } \Rightarrow x=4-6
$$

https://www.geogebra.org/m/eyabfyya

Example 2: Find the volume of the solid generated by revolving the given region about the line $x=6$:

$$
\text { So } V=\pi \int_{\sin }^{y=\sqrt{x} .(y=0)}\left(y^{2}-6\right)^{2}-(4-6)^{2} d y
$$

set

$$
\begin{aligned}
& \text { Right }=\text { Left } \\
& y^{2}=4 \Rightarrow y=2
\end{aligned}
$$

B / L I want greater than $y=0 \mathrm{~b} / \mathrm{c}$

Example 2: Find the volume of the solid generated by revolving the given region about the line $x=6$:

$$
y=\sqrt{x}, \quad y=0, \quad x=4
$$

$$
\begin{aligned}
& =\pi \int_{0}^{2}\left(y^{2}-12 y+36-4\right) d y \\
& =\pi \int_{0}^{2}\left(y^{2}-12 y+32\right) d y
\end{aligned}
$$

Example 2: Find the volume of the solid generated by revolving the given region about the line $x=6$:

$$
\left.\left.V^{y=\sqrt{x},} \prod^{y=0, x_{3}=4} \frac{y^{2}}{3}-\frac{12 y^{2}}{2}+32 y\right)\right]_{0}^{2}
$$

$\underbrace{4=\sqrt{x}}_{2}$

$$
=\frac{128 \pi}{3}
$$

Example 3: Find the volume of the solid generated by revolving the given region about the line $y=2$:

$$
y=2 x, \quad x=0, \quad y=2
$$

Draw the region.

| Rotation 2 | | $y=2$ |
| :--- | :--- | :--- | :--- |
| $x=0$ | | |

Example 3: Find the volume of the solid generated by revolving the given region about the line $y=2$:

$$
y=2 x, \quad x=0, \quad y=2
$$

Example 3: Find the volume of the solid generated by revolving the given region about the line $y=2$:

$$
\begin{aligned}
& y=2 x, \quad x=0, \quad y=2 \\
& y=2=\left\{\begin{array}{l}
y=2 x, \quad x=0, \quad y \\
d x-\rho r \text { dole }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =4.4 / 2
\end{aligned}
$$

43

GeoGebra Link for Lesson 16

Ohttps://www.geogebra.org/m/y4pam3mr

O Note click on the play buttons on the left-most screen and the animation will play/pause.

