> Please show all your work! Answers without supporting work will not be given credit.

Write answers in spaces provided.

Name: \qquad

1. [4 pts] Suppose that $f(x, y)$ can be written as a product $f(x, y)=F(x) G(y)$ of a function of x and a function of y. Then the integral of f over the rectangle R : $a \leq x \leq b, c \leq y \leq d$ can be evaluated as a product as well, by the formula

$$
\iint_{R} f(x y) d A=\left(\int_{a}^{b} F(x) d x\right)\left(\int_{c}^{d} G(y) d y\right)
$$

Provide a justification steps (i) through (iv) of the following argument.

$$
\begin{equation*}
\iint_{R} f(x, y) d A=\int_{c}^{d}\left(\int_{a}^{b} F(x) G(y) d x\right) d y \tag{i}
\end{equation*}
$$

\qquad
$=\int_{c}^{d}\left(G(y) \int_{a}^{b} F(x) d x\right) d y$
(ii) \qquad

$$
\begin{equation*}
=\int_{c}^{d}\left(\int_{a}^{b} F(x) d x\right) G(y) d y \tag{iii}
\end{equation*}
$$

$$
=\left(\int_{a}^{b} F(x) d x\right)\left(\int_{c}^{d} G(y) d y\right)
$$

(iv)
2. [2 pts] For what values of the constant k does the second derivative test guarantee that

$$
f(x, y)=x^{2}+k x y+y^{2}
$$

will have a saddle point at $(0,0)$? Give reasons for your answers.
\qquad

Why? \qquad
[2 pts] A local minimum at $(0,0)$? Give reasons for your answers.

$$
k=\underline{\square}
$$

Why? \qquad
[$\mathbf{2} \mathbf{p t s}$] For what values of k is the second derivative test inconclusive? Give reasons for your answers.

$$
k=
$$

\qquad

Why?

