Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. [$\mathbf{5} \mathbf{~ p t s}$] The radioactive isotope ${ }^{226} \mathrm{Ra}$ has a half-life of 1,599 years. If there are 10 grams of ${ }^{226} \mathrm{Ra}$ initially, how much is there are 1,000 years.
(Round your answer to 4 decimal places)

Solution: Recall that half-life problems have:

$$
y=C e^{k t} \quad \text { and } \quad k=\frac{-\ln (2)}{\text { half-life }} \quad[2 \mathbf{p t s}]
$$

[1 pt] So $k=\frac{-\ln (2)}{\text { half-life }}=\frac{-\ln (2)}{1599}$ and $C=10$. So,

$$
y=10 \exp \left[\frac{-\ln (2)}{1599} t\right] \quad[\mathbf{1} \mathbf{~ p t}]
$$

[1 pt] So, $y(1000) \approx 6.4828$ grams.
2. [$\mathbf{5} \mathbf{~ p t s}$] The rate of change of the population $N(t)$ of a sample of bacteria is directly proportional to the number of bacteria present, so

$$
N^{\prime}(t)=k N
$$

where time t is measured in hours. Initially, there are 200 bacteria present. If the number of bacteria after 3 hours is 400 , find the growth rate k in terms of hours.

(Round your answer to 3 decimal places)

Solution: Recall that $N^{\prime}(t)=k N$ means that

$$
N(t)=C e^{k t} \quad[\mathbf{1} \mathbf{p t}]
$$

When $N(0)=200$,

$$
200=N(0)=C e^{k \cdot 0}=C \quad[\mathbf{1} \mathbf{~ p t}]
$$

So, $N(t)=200 e^{k t}$. When $N(3)=400$,

$$
\begin{aligned}
400=N(3)=200 e^{3 k} & {[\mathbf{1} \mathbf{~ p t}] } \\
2=\frac{400}{200}=e^{3 k} & \\
\ln (2)=3 k & {[\mathbf{1} \mathbf{~ p t}] } \\
k=\frac{1}{3} \ln (2) \approx 0.231 & {[\mathbf{1} \mathbf{~ p t}] }
\end{aligned}
$$

