Name: \qquad

1. [$\mathbf{2} \mathbf{p t s}$] Circle the technique you think is easiest to find the general solution of the differential equation:

$$
\frac{d y}{d t}=-\frac{2}{3} y
$$

Don't Solve!

A) Exponential Growth and Decay Formula
B) Separable Functions
C) First-Order Linear Equations

Solution: The easiest is technique to use is A) Exponential Growth and Decay Formula, which is

$$
y^{\prime}=k y \quad \Rightarrow \quad y=C e^{k t}
$$

Hence $y=C e^{-(2 / 3) t}$.
2. [$4 \mathbf{p t s}$] What is the integrating factor of the following differential equation?

$$
y^{\prime}+(\cot (x)) y=\sin ^{2}(x)
$$

Solution: Note that the differential equation is already in Standard Form.
So $P(x)=\tan (x)[\mathbf{1} \mathbf{p t}]$.

$$
\begin{aligned}
u(x)=\exp \left[\int P(x) d x\right] & =\exp \left[\int \cot (x) d x\right] \\
& =\exp \left[\int \frac{\cos (x)}{\sin (x)} d x\right] \\
& \xlongequal[=\cos (x) d x]{u=\sin (x)} \exp \left[\int \frac{1}{u} d u\right]=\exp [\ln (u)]=u=\sin (x)
\end{aligned}
$$

3. [4 pts] What is the integrating factor of the following differential equation?

$$
(x+1) \frac{d y}{d x}-2\left(x^{2}+x\right) y=\frac{e^{x^{2}}}{x+1}
$$

Solution: First get the differential equation is already in Standard Form. i.e.

$$
\begin{aligned}
& \frac{d y}{d x}-\frac{2\left(x^{2}+x\right)}{x+1} y=\frac{e^{x^{2}}}{(x+1)^{2}} \quad[\mathbf{1 ~ p t}] \\
& \text { So } P(x)=-\frac{2\left(x^{2}+x\right)}{x+1}=-\frac{2 x(x+1)}{x+1}=-2 x[\mathbf{1} \mathbf{~ p t}] . \\
& u(x)=\exp \left[\int P(x) d x\right]=\exp \left[\int-2 x d x\right]=\exp \left[-x^{2}\right]=e^{-x^{2}} \quad[\mathbf{2} \mathbf{p t s}]
\end{aligned}
$$

