Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name:

1. [2 pts each] If the given series converges, then find its sum. If not, state that it diverges.
(a) $\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n}$
(b) $\sum_{n=0}^{\infty} 6\left(\frac{-1}{9}\right)^{n}$

Solution: [2 pts] Since our sum starts at $n=0$, we can check whether our r satisfies the condition:

$$
|r|<1
$$

Since $r=3 / 2$, it doesn't satisfy the condition. Hence the series diverges.

Solution: [1 pt] Since our sum starts at $n=0$, we can check whether our r satisfies the condition:

$$
|r|<1
$$

Since $r=-1 / 9$, it does satisfy the condition.

Hence we can use the Geometric Series Formula

$$
\sum_{n=0}^{\infty} 6\left(-\frac{1}{9}\right)^{n}=\frac{6}{1-(-1 / 9)}=\frac{54}{10}[\mathbf{1} \mathbf{~ p t}]
$$

2. [6 pts] Express $f(x)=\frac{3}{1+2 x}$ as a power series and it's radius of convergence.

Solution: Let's rewrite $f(x)$ to look like our Power Series Formula.

$$
\frac{3}{1+2 x}=3 \cdot \frac{1}{1-(-2 x)} \quad[\mathbf{1} \mathbf{p t}]
$$

So replace x with $-2 x$ in our formula.

$$
\sum_{n=0}^{\infty}(-2 x)^{n}=\frac{1}{1-(-2 x)} \quad \text { where }|-2 x|<1 \quad[\mathbf{2} \mathbf{p t s}]
$$

Now multiply both sides by 3 .

$$
3 \sum_{n=0}^{\infty}(-2 x)^{n}=\frac{3}{1-(-2 x)} \quad \text { where } 2 \cdot|x|<1 \quad[\mathbf{1} \mathbf{p t}]
$$

Hence

$$
\sum_{n=0}^{\infty} 3(-1)^{n} 2^{n} x^{n}=\frac{3}{1+2 x} \quad \text { where }|x|<\frac{1}{2} \quad[\mathbf{2} \mathbf{~ p t s}]
$$

Hence the radius of convergence is $R=1 / 2$.

