MA 16020 LESSON 18: INTRODUCTION TO FUNCTIONS OF SEVERAL VARIABLES (ALGEBRA REVIEW)

DOMAIN & RANGE OF SINGLE VARIABLE FUNCTIONS

Recall the following common Domains and Ranges:

1. $y = e^x$	Domain: $(-\infty, \infty)$	Range: $(0, \infty)$
2. $y = ln(x)$	Domain: $(0, \infty)$	Range: $(-\infty, \infty)$

Note that $y = e^x$ and y = ln(x) are inverses of each other. Which mean the domain of the first function is the range of the second (and vice versa).

3. $y = \sqrt{x}$	Domain: [0,∞)	Range: $(-\infty, \infty)$
4. $y = \sqrt[3]{x}$	Domain: $(-\infty, \infty)$	Range: $(-\infty, \infty)$

Note: Let $y = \sqrt[n]{x} = x^{1/n}$.Range: $(-\infty, \infty)$ • If n is even, thenDomain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ • If n is odd, thenDomain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$

Techniques for finding the Domain:

- Given $\sqrt{?}$ then $? \ge 0$ Given ln? then ? > 0
- Given $\frac{1}{?}$ then $? \neq 0$ Given $\frac{1}{\sqrt{?}}$ then ? > 0

Exercise 1: Find the Domain and Range of the following:

1. $y = \sqrt{2x + 3}$	Domain:	Range:
2. $y = \sqrt{x^2 - 1}$	Domain:	Range:
3. $y = ln(x^2 + 2x + 1)$	Domain:	Range:
$4. \ y = \frac{1}{x+4}$	Domain:	Range:
$5. \ y = \frac{1}{\sqrt{5x+1}}$	Domain:	Range:
6. $y = \frac{\sqrt{x-1}}{x^2+3x-4}$	Domain:	Range:
7. $y = \frac{\sqrt{2x-1}}{ln(10x-5)}$	Domain:	Range:
$8. \ y = \sqrt[4]{7x+4}$	Domain:	Range:
9. $y = \frac{\ln(x+2)\sqrt[4]{2x+1}}{\sqrt{x-6}}$	Domain:	Range:

VERTICAL + HORIZONTAL ASYMPTOTES

Recall the following functions:

Exercise 2: Find the horizontal asymptote (HA) and the vertical asymptote (VA) for each of the following functions:

Hint: Instead of finding the HA and VA algebraically, find them using the graphs above. You may need to do a vertical/horizontal shift.

a) $y = \frac{1}{2x}$	HA:	VA:
b) $y = \frac{3}{x}$	HA:	VA:
c) $y = \frac{1}{x+5}$	HA:	VA:
d) $y = \frac{1}{x} - 4$	HA:	VA:
e) $y = \frac{2}{x^2}$	HA:	VA:
f) $y = \frac{1}{3x^2}$	HA:	VA:
g) $y = \frac{1}{(x+1)^2}$	HA:	VA:
h) $y = \frac{1}{x^2} + 10$	HA:	VA:
i) $y = e^x$	HA:	VA:
j) $y = e^{-x}$	HA:	VA:
k) $y = 3e^{-x}$	HA:	VA:
1) $y = 3e^{-x} + 3$	HA:	VA:
m) $y = 3e^{-x} + 1$	HA:	VA:

Y-INTERCEPTS

In the last section, we looked at these images. From them, we can see the following intercepts:

For $y = e^x$, y-intercept is (0, 1)

For $y = e^{-x}$, y-intercept is (0, 1)

Exercise 3: Find the y-intercept(s) for each of the following functions:

Hint: Instead of finding the y-intercept algebraically, find them using the graphs above. You may need to do a vertical/horizontal shift.

a) $y = e^x$	Y-INTERCEPT:
b) $y = e^{-x}$	Y-INTERCEPT:
c) $y = 3e^{-x}$	Y-INTERCEPT:
d) $y = 3e^{-x} + 3$	Y-INTERCEPT:
e) $y = 3e^{-x} + 1$	Y-INTERCEPT:

USEFUL DEFINITIONS FOR HW 18

1. Point at the origin	\Rightarrow	(0,0)	
2. Lines	⇒	y = mx + b	where <i>m</i> is the slope and <i>b</i> is the y-intercept
3. Parabolas	⇒	$y = a(x-h)^2 + k$	where (h, k) is the vertex of the parabola
4. Exponential Function	าร		
A		example $y = e^{\chi}$	
b. Decreasing	\rightarrow	example $y = e^x$ example $y = e^{-x}$	
0. Decreasing	_	example y = e	
5. Logarithmic Function	ns		
U U		example $y = ln x$	
•		example $y = ln x$ example $y = -ln$	Ŷ
0. Decreasing	\rightarrow	example y = in	
6 Dational Eurotions	ra fun	ations of the form u -	p(x)
6. Rational Functions a	le luii	x = 101111. y =	$-\frac{1}{q(x)}$
a. x-axis symmetr	•		o. y-axis symmetry
$\Rightarrow f(x)$) = -	-f(x)	$\Rightarrow f(x) = f(-x)$
2 $y = x $ 0.5 1 -2	1.5	2	$y = x^2$
7. Circles \Rightarrow	(x -	$(-h)^2 + (y-k)^2 = r^2$	² where <i>r</i> is radius and (h, k) is the center

- 8. Ellipses $\Rightarrow \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ where (h, k) is the center
- 9. Hyperbolas $\Rightarrow \frac{(x-h)^2}{a^2} \frac{(y-k)^2}{b^2} = 1$ where (h, k) is the center

To find the foci for 8 and 9, we use the equation $c^2 = a^2 + b^2$, and solve for *c*.

CIRCLES

Recall the formulas for Circles: Equation of a Circle: $(x - h)^2 + (y - k)^2 = r^2$ where r is the radius and (h, k) is the center of the circle

Area of the Circle: $A = \pi r^2$

Exercise 4: Find the area of the following circles:

- a) $x^2 + y^2 = 1$ Area = _____ **b**) $x^2 + y^2 = 3$ Area = _____ Area = _____
- c) A circle with center (0,1) and radius 625