MA 16020 LESSON 18: INTRODUCTION TO FUNCTIONS OF SEVERAL VARIABLES
 (ALGEBRA REVIEW)

DOMAIN \& RANGE OF SINGLE VARIABLE FUNCTIONS

Recall the following common Domains and Ranges:

1. $y=e^{x}$
Domain: $(-\infty, \infty)$
Range: $(0, \infty)$
2. $y=\ln (x)$
Domain: $(0, \infty)$
Range: $(-\infty, \infty)$

Note that $y=e^{x}$ and $y=\ln (x)$ are inverses of each other. Which mean the domain of the first function is the range of the second (and vice versa).
3. $y=\sqrt{x}$
Domain: $[0, \infty)$
Range: $(-\infty, \infty)$
4. $y=\sqrt[3]{x}$
Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$

Note: Let $y=\sqrt[n]{x}=x^{1 / n}$.

- If n is even, then Domain: $[0, \infty)$
- If n is odd, then Domain: $(-\infty, \infty)$

Range: $(-\infty, \infty)$
Range: $(-\infty, \infty)$

Techniques for finding the Domain:

- Given $\sqrt{\text { ? }}$ then $? \geq 0$
- Given \ln ? then ? >0
- Given $\frac{1}{?} \quad$ then $? \neq 0$
- Given $\frac{1}{\sqrt{?}}$ then $?>0$

Exercise 1: Find the Domain and Range of the following:

1. $y=\sqrt{2 x+3}$
Domain:
Range:
2. $y=\sqrt{x^{2}-1}$

Domain:
Range:
3. $y=\ln \left(x^{2}+2 x+1\right) \quad$ Domain:

Range:
4. $y=\frac{1}{x+4}$

Domain:
Range:
5. $y=\frac{1}{\sqrt{5 x+1}}$

Domain:
Range:
6. $y=\frac{\sqrt{x-1}}{x^{2}+3 x-4}$

Domain:
Range:
7. $y=\frac{\sqrt{2 x-1}}{\ln (10 x-5)}$

Domain:
Range:
8. $y=\sqrt[4]{7 x+4}$

Domain:
Range:
9. $y=\frac{\ln (x+2) \sqrt[4]{2 x+1}}{\sqrt{x-6}}$

Domain:
Range:

VERTICAL + HORIZONTAL ASYMPTOTES

Recall the following functions:

Exercise 2: Find the horizontal asymptote (HA) and the vertical asymptote (VA) for each of the following functions:

Hint: Instead of finding the HA and VA algebraically, find them using the graphs above. You may need to do a vertical/horizontal shift.
a) $y=\frac{1}{2 x}$

HA:

VA:

VA:

VA:

VA:

VA:

VA:

VA:

VA:

VA:
VA:

VA:

VA:

VA:

Y-INTERCEPTS

In the last section, we looked at these images. From them, we can see the following intercepts:

For $y=e^{x}, y$-intercept is $(0,1)$

For $y=e^{-x}, y$-intercept is $(0,1)$

Exercise 3: Find the y-intercept(s) for each of the following functions:
Hint: Instead of finding the y-intercept algebraically, find them using the graphs above. You may need to do a vertical/horizontal shift.
a) $y=e^{x}$

Y-INTERCEPT:

Y-INTERCEPT:
Y-INTERCEPT:
Y-INTERCEPT:
Y-INTERCEPT:

USEFUL DEFINITIONS FOR HW 18

1. Point at the origin $\quad \Rightarrow \quad(0,0)$
2. Lines $\quad \Rightarrow \quad y=m x+b$
where m is the slope and b is the y -intercept
3. Parabolas $\quad \Rightarrow \quad y=a(x-h)^{2}+k$
where (h, k) is the vertex of the parabola
4. Exponential Functions
a. Increasing $\quad \Rightarrow$ example $y=e^{x}$
b. Decreasing $\quad \Rightarrow \quad$ example $y=e^{-x}$
5. Logarithmic Functions
a. Increasing
\Rightarrow example $\quad y=\ln x$
b. Decreasing $\quad \Rightarrow \quad$ example $\quad y=-\ln x$
6. Rational Functions are functions of the form: $y=\frac{p(x)}{q(x)}$
a. x -axis symmetry

$$
\Rightarrow \quad f(x)=-f(x)
$$

b. y-axis symmetry
$\Rightarrow \quad f(x)=f(-x)$

7. Circles $\quad \Rightarrow \quad(x-h)^{2}+(y-k)^{2}=r^{2}$ where r is radius and (h, k) is the center
8. Ellipses $\quad \Rightarrow \quad \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad$ where (h, k) is the center
9. Hyperbolas $\Rightarrow \quad \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \quad$ where (h, k) is the center

To find the foci for 8 and 9 , we use the equation $c^{2}=a^{2}+b^{2}$, and solve for c.

CIRCLES

Recall the formulas for Circles:
Equation of a Circle: $\quad(x-h)^{2}+(y-k)^{2}=r^{2}$
where r is the radius and (h, k) is the center of the circle
Area of the Circle: $A=\pi r^{2}$
Exercise 4: Find the area of the following circles:
a) $x^{2}+y^{2}=1$
b) $x^{2}+y^{2}=3$
c) A circle with center $(0,1)$ and radius 625

Area $=$
Area = \qquad
Area = \qquad

