MA 16020 LESSON 21: DIFFERENTIALS OF MULTIVARIABLES FUNCTIONS
 (PROBLEM SET)

Example 1: Use increments to estimate the change in z at $(x, y)=(0,0)$ if

$$
\frac{d z}{d x}=-8 x+6 \text { and } \frac{d z}{d y}=6 y+4
$$

The change in x is 0.3 and the change in y is 0.2 .

Example 2: Find $z=f(x, y)$ and use the total differential to approximate the quantity.

$$
\sqrt{(5.3)^{2}+(7.45)^{2}}-\sqrt{5^{2}+7^{2}}
$$

Example 3: The specific gravity of an object with density greater than that of water can be determined by using the formula

$$
S=\frac{A}{A-W}
$$

where A and W are the weights of the object in air and in water, respectively. If the measurements of an object are $A=2.2 \mathrm{lb}$ and $W=2 \mathrm{lb}$ with maximum errors of 0.02 lb and 0.02 lb , respectively,
a) Find the approximate maximum error in calculating S.
b) Find the approximate relative percentage error in calculating S.

Example 4: Hot chocolate sales (in gallons) are predicted by

$$
f(x, y)=1.7 x^{1 / 2} y^{-1}
$$

where y is the temperature (in ${ }^{\circ} C$) and x is the amount of snow on the ground (in inches). If the temperature rises from 1.6° to 1.7° and the amount of snow falls from $\mathbf{2}$ inches to $\mathbf{1 . 2}$ inches, use differentials to estimate the change in hot chocolate sales.
a) The change in hot chocolate sales due to the change in the amount of snow is:
b) The change in hot chocolate sales due to the change in the temperature is:
c) The total change in hot chocolate sales is:

Example 5: A soft drink can is a cylinder $h \mathrm{~cm}$ tall with radius $r \mathbf{c m}$. It's volume is given by the formula

$$
V(r, h)=\pi r^{2} h
$$

A particular can is 14 cm tall and has a radius of 4 cm . If the height is increased by 1.2 cm , use calculus to estimate the change in the radius needed so that the volume stays the same.

