Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. [$\mathbf{5} \mathbf{~ p t s}$] Find a function $z=f(x, y)$ and then use the total differential to approximate the quantity to 3 decimals.

$$
\cos \left(\frac{\pi}{4}+0.02\right) \sin \left(\frac{\pi}{4}-0.03\right)-\cos \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{4}\right)
$$

Solution: [1 pt] Let's make $f(x, y)=\cos (x) \sin (y)$.
[1 pt] So $x=\frac{\pi}{4}, \quad y=\frac{\pi}{4}, \quad \Delta x=0.02, \quad$ and $\quad \Delta y=-0.03$.
[1 pt] First, let's find the partials of V.

$$
f_{x}(x, y)=-\sin (x) \sin (y) \quad f_{y}(x, y)=\cos (x) \cos (y)
$$

[1 pt] Next, let's plug $x=\frac{\pi}{4}$ and $y=\frac{\pi}{4}$ into the partials.

$$
f_{x}\left(\frac{\pi}{4}, \frac{\pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{4}\right)=-\frac{1}{2} \quad f_{y}\left(\frac{\pi}{4}, \frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right)=\frac{1}{2}
$$

Using the formula,

$$
\Delta f=f_{x}\left(\frac{\pi}{4}, \frac{\pi}{4}\right) \Delta x+f_{y}\left(\frac{\pi}{4}, \frac{\pi}{4}\right) \Delta y
$$

plug in the values $f_{x}\left(\frac{\pi}{4}, \frac{\pi}{4}\right)=-\frac{1}{2}, \quad f_{y}\left(\frac{\pi}{4}, \frac{\pi}{4}\right)-\frac{1}{2}, \quad \Delta x=0.02, \quad$ and $\quad \Delta y=-0.03$.

$$
\Delta f=-\frac{1}{2}(0.02)+\frac{1}{2}(-0.03)=-0.025 \quad[\mathbf{1} \mathbf{~ p t}]
$$

2. [5 pts] A soft drink can is a cylinder $h \mathrm{~cm}$ tall with radius $r \mathrm{~cm}$. It's volume is given by the formula

$$
V(r, h)=\pi r^{2} h
$$

A particular can is 14 cm tall and has a radius of 4 cm . If the height is DECREASED by 1.2 cm , use calculus to estimate the change in the radius needed so that the volume stays the same. Round your answer to 4 decimal places.

Solution: This problem wants us to find Δr such that $\Delta V=0$.
[1 pt] We are given $h=14, \quad r=4$, and $\quad \Delta h=-1.2$.
[$\mathbf{1} \mathbf{~ p t}]$ First, let's find the partials of V.

$$
V_{r}(r, h)=2 \pi r h \quad V_{h}(r, h)=\pi r^{2}
$$

[$\mathbf{1} \mathbf{~ p t}]$ Next, let's plug $r=4$ and $h=14$ into the partials.

$$
V_{r}(4,14)=112 \pi \quad V_{h}(4,14)=16 \pi
$$

Using the formula,

$$
\Delta V=V_{r}(4,14) \Delta r+V_{h}(4,14) \Delta h
$$

plug in the values $V_{r}(4,14)=112 \pi, \quad V_{h}(4,14)=16 \pi, \quad$ and $\quad \Delta h=-1.2$

$$
\Delta V=112 \pi \Delta r+16 \pi(-1.2)
$$

Now set this equation equal to 0 and solve for Δr.

$$
\begin{array}{ll}
0=112 \pi \Delta r-19.2 \pi & {[\mathbf{1} \mathbf{~ p t}]} \\
\Delta r=\frac{19.2 \pi}{112 \pi}=0.1714 & {[\mathbf{1} \mathbf{~ p t}]}
\end{array}
$$

