Name:

1. [6 pts] Evaluate $\frac{d z}{d t}$ at $t=1$ if

$$
z=\exp \left[x^{2}+4 x y+y^{2}+3 y\right] \quad x=\cos \left(\frac{\pi}{2} t\right) \quad y=\ln t
$$

Solution: [2 pts] First find the partials of z

$$
\frac{d z}{d x}=(2 x+4 y) \exp \left[x^{2}+4 x y+y^{2}+3 y\right] \quad \frac{d z}{d y}=(4 x+2 y+3) \exp \left[x^{2}+4 x y+y^{2}+3 y\right]
$$

[1 pt] Next find the derivatives of x and y

$$
\frac{d x}{d t}=-\frac{\pi}{2} \sin \left(\frac{\pi}{2} t\right) \quad \frac{d y}{d t}=\frac{1}{t}
$$

[2 pts] Before plugging all the equations into the multivariate chain rule, let's plug in $t=1$. So,

$$
\begin{array}{rlrl}
x(1) & =\cos \left(\frac{\pi}{2}\right)=0 & y(1) & =\ln (1)=0 \\
\left.\frac{d x}{d t}\right|_{(0,0)} & =-\frac{\pi}{2} \sin \left(\frac{\pi}{2}\right)=-\frac{\pi}{2} & \left.\frac{d y}{d t}\right|_{(0,0)} & =\frac{1}{1}=1 \\
\left.\frac{d z}{d x}\right|_{(0,0)} & =(2(0)+4(0)) \exp (0)=0 & \left.\frac{d z}{d y}\right|_{(0,0)} & =(4(0)+2(0)+3) \exp (0)=3
\end{array}
$$

By the multivariate chain rule,

$$
\left.\frac{d z}{d t}\right|_{t=1}=\left.\left.\frac{d z}{d x}\right|_{(x, y)=(0,0)} \frac{d x}{d t}\right|_{t=1}+\left.\left.\frac{d z}{d y}\right|_{(x, y)=(0,0)} \frac{d y}{d t}\right|_{t=1}=3[\mathbf{1} \mathbf{p t}]
$$

2. [$\mathbf{5} \mathbf{~ p t s}$] The surface area of a cylinder is given by

$$
A(h, r)=2 \pi r^{2}+2 \pi r h
$$

where h is the height of the cylinder and r is the radius. Suppose

- the height of the cylinder is decreasing at a rate of 4 inches per minute
- the radius of the cylinder is increasing at a rate of 2 inches per minute.

What is the rate of change of the surface area when the height is 10 inches and the radius is 15 inches?

Solution: [1 pt] We are given $h=10, \quad r=15, \quad \Delta h=-4 \quad$ and $\quad \Delta r=2$.
[1 pt] First, let's find the partials of A.

$$
A_{r}(r, h)=4 \pi r+2 \pi h \quad A_{h}(r, h)=2 \pi r
$$

[1 pt] Next, let's plug $h=10$ and $r=15$ into the partials.

$$
A_{r}(10,15)=60 \pi+20 \pi=80 \pi \quad A_{h}(10,15)=30 \pi
$$

Using the formula,

$$
\begin{aligned}
\Delta A & =A_{r}(10,15) \Delta r+A_{h}(10,15) \Delta h \\
& =80 \pi \cdot(2)+30 \pi \cdot(-4)=40 \pi \quad[\mathbf{1} \mathbf{~ p t}]
\end{aligned}
$$

