Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. [5 pts] Find the discriminant of

$$
f(x, y)=e^{x} \sin (y)
$$

Simplify your answer. Note: $\sin ^{2}(y)+\cos ^{2}(y)=1$.

Solution: [1 pt] Recall that the discriminant is

$$
D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}
$$

[$\mathbf{3} \mathbf{p t s}$]First find the partials:

$$
\begin{array}{rr}
f_{x}=e^{x} \sin (y) & f_{y}=e^{x} \cos (y) \\
f_{x x}=e^{x} \sin (y) & f_{x y}=e^{x} \cos (y) \\
f_{y y}=-e^{x} \sin (y)
\end{array}
$$

Now plug the correct partials into the discriminant formula above:

$$
\begin{aligned}
D & =e^{x} \sin (y) \cdot\left(-e^{x} \sin (y)\right)-\left(e^{x} \cos (y)\right)^{2} \\
& =-\left(e^{x} \sin (y)\right)^{2}-\left(e^{x} \cos (y)\right)^{2} \\
& =-e^{2 x} \sin ^{2}(y)-e^{2 x} \cos ^{2}(y) \\
& =-e^{2 x}\left(\sin ^{2}(y)+\cos ^{2}(y)\right) \\
& =-e^{2 x} \quad[\mathbf{1} \mathbf{p t}]
\end{aligned}
$$

2. [5 pts] Given the information in the table below, find and classify any critical points for the function $g(x, y)$.

$\left(x_{0}, y_{0}\right)$	$g\left(x_{0}, y_{0}\right)$	$g_{x}\left(x_{0}, y_{0}\right)$	$g_{y}\left(x_{0}, y_{0}\right)$	$g_{x x}\left(x_{0}, y_{0}\right)$	$g_{x y}\left(x_{0}, y_{0}\right)$	$g_{y y}\left(x_{0}, y_{0}\right)$
$(0,1)$	0	3	0	0	-2	4
$(4,3)$	-3	0	0	-1	2	-6
$(2,7)$	15	0	0	4	5	8
$(5,6)$	4	0	0	3	5	2
$(-2,8)$	2	0	0	2	2	2

Solution: First check for each point that both g_{x} and g_{y} are 0 .

- Hence $(0,1)$ is not a critical point. [1 pt]

Next, let's compute the discriminant of each point.

- $(4,3): D=g_{x x} g_{y y}-\left(g_{x y}\right)^{2}=-1 \cdot(-6)-(2)^{2}=-2$
- $(2,7): D=g_{x x} g_{y y}-\left(g_{x y}\right)^{2}=4 \cdot 8-(5)^{2}=7$
- $\underline{(5,6):} D=g_{x x} g_{y y}-\left(g_{x y}\right)^{2}=3 \cdot 2-(5)^{2}=-19$
- $\underline{(-2,8):} D=g_{x x} g_{y y}-\left(g_{x y}\right)^{2}=2 \cdot 2-(2)^{2}=0$

When $D>0$, we have a relative extrema. Hence $(4,3)$ and $(2,7)$ are relative extrema. To determine whether they are maxs or mins, we need to check the sign of $g_{x x}$.

- $(4,3): g_{x x}=-1<0$. Hence $(4,3)$ is a relative max. [1 pt]
- $(2,7): g_{x x}=4>0$. Hence $(2,7)$ is a relative min. [1 pt]

When $D<0$, we have a saddle point. Hence $(5,6)$ is a saddle point. [1 pt]
When $D=0$, the test is inconclusive. Hence at $(-2,8)$ the test is inconclusive. [1 pt]

