Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. [$4 \mathbf{~ p t s}$] Find the point(s) (x, y) where the function $f(x, y)=3 x^{2}+4 x y+6 x-15$ attains maximal value, subject to the constraint $x+y=10$.

Solution: Here $g(x, y)=x+y=10$. Using LaGrange Multipliers,

$$
\begin{aligned}
& f_{x}=6 x+4 y+6 \\
& f_{y}=4 x
\end{aligned}
$$

$$
\lambda g_{x}=\lambda(1)=\lambda
$$

$$
\lambda g_{y}=\lambda(1)=\lambda
$$

So our system is

$$
\begin{cases}6 x+4 y+6=\lambda & (1) \\ 4 x=\lambda & (2) \tag{2}\\ x+y=10 & (3)\end{cases}
$$

[1 pt] Set (1) and (2) equal to each other.

$$
\begin{gathered}
6 x+4 y+6=\lambda=4 x \\
2 x+4 y+6=0 \\
x+2 y+3=0 \\
x=-2 y-3
\end{gathered}
$$

[1 pt] Plug $x=-2 y-3$ into (3).

$$
\begin{gathered}
x+y=10 \\
-2 y-3+y=10 \\
-y-3=10 \\
y+3=-10 y=-13
\end{gathered}
$$

[1 pt] Plug $y=-13$ into $x=-2 y-3$.

$$
\begin{gathered}
x=-2 y-3 \\
x=-2(-13)-3 \\
x=23
\end{gathered}
$$

2. [6 pts] Find the minimum of the function using LaGrange Multipliers of the function $f(x, y)=$ $2 x^{2}+4 y^{2}$ subject to the constraint $x^{2}+y^{2}=1$.

Solution: Here $g(x, y)=x^{2}+y^{2}=1$. Using LaGrange Multipliers,

$$
\begin{array}{ll}
f_{x}=4 x & \lambda g_{x}=\lambda(2 x)=\lambda \\
f_{y}=8 y & \lambda g_{y}=\lambda(2 y)=\lambda
\end{array}
$$

So our system is

$$
\left\{\begin{array}{l}
4 x=2 x \lambda \\
8 y=2 y \lambda \\
x^{2}+y^{2}=1
\end{array}\right.
$$

[1 pt]
[1 pt] Solve (1).

$$
\begin{gathered}
4 x=2 x \lambda \\
4 x-2 x \lambda=0 \\
2 x(2-\lambda)=0
\end{gathered}
$$

So $x=0$ or $\lambda=2$.
[1 pt] Plug $x=0$ into (3).

$$
\begin{gathered}
x^{2}+y^{2}=1 \\
0^{2}+y^{2}=1 \\
y= \pm 1
\end{gathered}
$$

[1 pt] Plug $\lambda=2$ into (2).

$$
\begin{gathered}
8 y-2 y \lambda=0 \\
8 y-4 y=0 \\
4 y=0 \\
y=0
\end{gathered}
$$

[1 pt] Plug $y=0$ into (3).

$$
\begin{gathered}
x^{2}+y^{2}=1 \\
x^{2}+0=1 \\
x= \pm 1
\end{gathered}
$$

Hence all the points that need to be tested are $(1,0),(-1,0),(0,1),(0,-1)$. So

- $f(1,0)=2(1)^{2}+4(0)^{2}=2$
- $f(-1,0)=2(-1)^{2}+4(0)^{2}=2$
- $f(0,1)=2(0)^{2}+4(1)^{2}=4$
- $f(0,-1)=2(0)^{2}+4(-1)^{2}=4$
[$\mathbf{1} \mathbf{p t}$] Hence the minimum value is 2 .

