Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name:

1. Find the inverse matrix of following matrices:
(a) $[4 \mathrm{pts}] A=\left[\begin{array}{ll}2 & 4 \\ 1 & 6\end{array}\right]$

Solution: [$\mathbf{1} \mathbf{~ p t}]$ Recall the formula for finding the inverse matrix of a 2×2 matrix:

$$
\text { If } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text {, then } A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \text {. }
$$

Hence

$$
\begin{aligned}
A^{-1} & =\frac{1}{2(6)-4(1)}\left[\begin{array}{cc}
6 & -4 \\
-1 & 2
\end{array}\right] & & {[\mathbf{1} \mathbf{~ p t}] } \\
& =\frac{1}{8}\left[\begin{array}{cc}
6 & -4 \\
-1 & 2
\end{array}\right] & & {[\mathbf{1} \mathbf{~ p t}] } \\
& =\left[\begin{array}{cc}
6 / 8 & -4 / 8 \\
-1 / 8 & 2 / 8
\end{array}\right] & & {[\mathbf{1} \mathbf{~ p t}] }
\end{aligned}
$$

(b) $[\mathbf{6} \mathbf{~ p t s}] B=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0\end{array}\right]$

Solution: Recall that there is no formula to find the inverse of a 3×3 matrix. Hence we need to calculate it via an augment matrix:

$$
\left[\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
5 & 6 & 0 & 0 & 0 & 1
\end{array}\right] \quad[\mathbf{1} \mathbf{p t}]
$$

[4 pts] Your process will probably differ from the solution provided below. If so, as long as you used valid row operations, points will not be taken off.

$$
\begin{aligned}
{\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
5 & 6 & 0 & 0 & 0 & 1
\end{array}\right] } & \xrightarrow{5 R_{1}-R_{3} \leftrightarrow R_{3}}\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
0 & 4 & 15 & 5 & 0 & -1
\end{array}\right] \\
& \xrightarrow{4 R_{2}-R_{3} \leftrightarrow R_{3}}\left[\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
0 & 0 & 1 & -5 & 4 & 1
\end{array}\right] \\
& \xrightarrow{R_{2}-4 R_{3} \leftrightarrow R_{2}}\left[\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 0 & 20 & -15 & -4 \\
0 & 0 & 1 & -5 & 4 & 1
\end{array}\right] \\
& \xrightarrow{R_{1}-2 R_{2} \leftrightarrow R_{1}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & -39 & 30 & 8 \\
0 & 1 & 0 & 20 & -15 & -4 \\
0 & 0 & 1 & -5 & 4 & 1
\end{array}\right]
\end{aligned}
$$

$$
\xrightarrow{R_{1}-3 R_{3} \leftrightarrow R_{1}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -24 & 18 & 5 \\
0 & 1 & 0 & 20 & -15 & -4 \\
0 & 0 & 1 & -5 & 4 & 1
\end{array}\right]
$$

Hence

$$
B^{-1}=\left[\begin{array}{ccc}
-24 & 18 & 5 \\
20 & -15 & -4 \\
-5 & 4 & 1
\end{array}\right] \quad[\mathbf{1} \mathbf{p t}]
$$

