Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. [5 pts] Compute the area of the triangular region bounded by the y-axis and the lines $y=-x$ and $y=-8 x+7$. (EXACT VALUE ONLY!
(You must draw a graph with the lines corresponding to the problem for 2 pts.)

Solution:

[2pts for the graph]

Set-Up:

$$
\int_{0}^{1}(-8 x+7-(-x)) d x[\mathbf{1} \mathbf{p} \mathbf{t}]
$$

Now Integrate.

$$
\begin{array}{rlr}
\int_{0}^{1}(-7 x+7) d x & \left.=\left(-\frac{7}{2} x^{2}+7 x\right)\right]_{0}^{1} & {[\mathbf{1} \mathbf{p t}]} \\
& =-\frac{7}{2}(1)^{2}+7(1)-\left(-\frac{7}{2}(0)^{2}+7(0)\right) \\
& =\frac{7}{2} & {[\mathbf{1} \mathbf{p t}]}
\end{array}
$$

2. [5 pts] Find the area of the region bounded by $y=\sin (x), y=\cos (x), x=-\pi / 4$ and $x=\pi / 4$. (EXACT VALUE ONLY!)
(You must draw a graph with the lines corresponding to the problem for 2 pts.)

Solution:

[2pts for the graph]

Set-Up:

$$
\int_{-\pi / 4}^{\pi / 4}(\cos (x)-\sin (x)) d x \quad[\mathbf{1} \mathbf{p t}]
$$

Now Integrate.

$$
\begin{array}{rlr}
\int_{-\pi / 4}^{\pi / 4}(\cos (x)-\sin (x)) d x & =(\sin (x)+\cos (x))]_{-\pi / 4}^{\pi / 4} & {[\mathbf{1} \mathbf{p t}]} \\
& =\sin \left(\frac{\pi}{4}\right)+\cos \left(\frac{\pi}{4}\right)-\sin \left(-\frac{\pi}{4}\right)-\cos \left(-\frac{\pi}{4}\right) \\
& =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} & \\
& =\sqrt{2} & {[\mathbf{1} \mathbf{p t}]}
\end{array}
$$

