Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name:_

1. [5 pts] (EXACT ANSWER ONLY!) Find the volume of the solid generated by revolving the region enclosed by the curves

$$y = \sqrt{4x}$$
 and $y = 2x^2$ about the y-axis

Solution: WASHER PROBLEM Since we are doing rotation about the y-axis, we 4 need to determine the Right and Left functions. $y = \sqrt{4x}$ 3 Right $y = 2x^2 \iff x = \sqrt{\frac{y}{2}}$ (1, 2)2 $y = 2x^2$ 1 Left $y = \sqrt{4x} \iff x = \frac{y^2}{4}$ $\mathbf{2}$ 3 To find the bounds of the integral, set both equa-From the graph and the previous calculations,

tions equal.

we get the formula

$\sqrt{rac{y}{2}}=rac{y^2}{4}$	$V = \pi \int_0^2 \left[\left(\sqrt{\frac{y}{2}} \right)^2 - \left(\frac{y^2}{4} \right)^2 \right]$
$\frac{y}{2} = \frac{y^4}{16}$	$=\pi\int_0^2\left[rac{y}{2}-rac{y^4}{16} ight]dy$
$y^4 = 8y$ $y^4 - 8y = 0$	$=\pi\left[rac{y^2}{4}-rac{y^5}{16(5)} ight]_0^2$
$y(y^3 - 8) = 0$ y = 0, 2	$= \pi \left[\frac{2^2}{4} - \frac{2^5}{16(5)} \right]$
	$=\frac{3}{5}\pi$
?	

How I graded?

• 3 pts for Set-Up

• 1 pt for Integration

• 1 pt for final answer

dy

2. [5 pts] (EXACT ANSWER ONLY!) Find the volume of the solid generated by revolving the region enclosed by the curves

$$y = \frac{27}{x^2}$$
, $y = 3$ and $x = 1$ about the line $y = 3$

Solution: DISK PROBLEM Since we are doing rotation about the line y = 330 (1, 27)(parallel to x-axis) and the region "hugs" the 25line y = 3, we just need to find $f(x) - 3 = \frac{27}{x^2} - 3$ 202715y = $\overline{x^2}$ Now to find the bounds of the integral. Note the 10 smallest value of x is 1. Now to find the biggest value, plug y = 3 into $y = \frac{27}{x^2}$. (3, 3)5 + y = 3 $\mathbf{2}$ 3 $3 = \frac{27}{x^2}$ -5x = 1 $3x^2 = 27$ $x^2 = 9$ $x = \pm 3$ Note that we discard x = -3 because of the graph.

From the graph and above, we get the formula

$$V = \pi \int_{1}^{3} \left(\frac{27}{x^{2}} - 3\right)^{2} dx = \pi \int_{1}^{3} \left[\frac{729}{x^{4}} - \frac{162}{x^{2}} + 9\right] dx$$
$$= \pi \int_{1}^{3} \left[729x^{-4} - 162x^{-2} + 9\right] dx$$
$$= \pi \left[\frac{729}{-3}x^{-3} - \frac{162}{-1}x^{-1} + 9x\right]_{1}^{3}$$
$$= \pi \left[-\frac{243}{x^{3}} + \frac{162}{x} + 9x\right]_{1}^{3}$$
$$= 144\pi$$

How I graded?

• 3 pts for Set-Up • 1 pt for Integration • 1 pt for final answer