Name: \qquad

1. [$\mathbf{5}$ pts] (EXACT ANSWER ONLY!) Find the volume of the solid generated by revolving the region enclosed by the curves

$$
y=\sqrt{4 x} \text { and } y=2 x^{2} \text { about the } y \text {-axis }
$$

Solution: WASHER PROBLEM

Since we are doing rotation about the y-axis, we need to determine the Right and Left functions.

Right $\quad y=2 x^{2} \quad \longleftrightarrow x=\sqrt{\frac{y}{2}}$

Left $y=\sqrt{4 x} \longleftrightarrow x=\frac{y^{2}}{4}$

From the graph and the previous calculations, we get the formula

$$
\begin{aligned}
V & =\pi \int_{0}^{2}\left[\left(\sqrt{\frac{y}{2}}\right)^{2}-\left(\frac{y^{2}}{4}\right)^{2}\right] d y \\
& =\pi \int_{0}^{2}\left[\frac{y}{2}-\frac{y^{4}}{16}\right] d y \\
& =\pi\left[\frac{y^{2}}{4}-\frac{y^{5}}{16(5)}\right]_{0}^{2} \\
& =\pi\left[\frac{2^{2}}{4}-\frac{2^{5}}{16(5)}\right] \\
& =\frac{3}{5} \pi
\end{aligned}
$$

How I graded?

- 3 pts for Set-Up
- $\mathbf{1} \mathbf{~ p t}$ for Integration
- $\mathbf{1} \mathbf{p t}$ for final answer

2. [5 pts] (EXACT ANSWER ONLY!) Find the volume of the solid generated by revolving the region enclosed by the curves

$$
y=\frac{27}{x^{2}}, \quad y=3 \quad \text { and } \quad x=1 \quad \text { about the line } y=3
$$

Solution: DISK PROBLEM

Since we are doing rotation about the line $y=3$ (parallel to x -axis) and the region "hugs" the line $y=3$, we just need to find

$$
f(x)-3=\frac{27}{x^{2}}-3
$$

Now to find the bounds of the integral. Note the smallest value of x is 1 . Now to find the biggest value, plug $y=3$ into $y=\frac{27}{x^{2}}$.

$$
\begin{gathered}
3=\frac{27}{x^{2}} \\
3 x^{2}=27 \\
x^{2}=9 \\
x= \pm 3
\end{gathered}
$$

Note that we discard $x=-3$ because of the graph.

From the graph and above, we get the formula

$$
\begin{aligned}
V=\pi \int_{1}^{3}\left(\frac{27}{x^{2}}-3\right)^{2} d x & =\pi \int_{1}^{3}\left[\frac{729}{x^{4}}-\frac{162}{x^{2}}+9\right] d x \\
& =\pi \int_{1}^{3}\left[729 x^{-4}-162 x^{-2}+9\right] d x \\
& =\pi\left[\frac{729}{-3} x^{-3}-\frac{162}{-1} x^{-1}+9 x\right]_{1}^{3} \\
& =\pi\left[-\frac{243}{x^{3}}+\frac{162}{x}+9 x\right]_{1}^{3} \\
& =144 \pi
\end{aligned}
$$

How I graded?

- 3 pts for Set-Up
- $1 \mathbf{p t}$ for Integration
- $1 \mathbf{p t}$ for final answer

