Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. Using the graph below, answer the following questions:

I. Determine the vertical asymptote(s).
II. Determine the horizontal/slant asymptote.
III. Using I and II, determine which function below represents the graph?
(a) $f(x)=\frac{x+2}{x-2}$
(b) $f(x)=\frac{x-3}{(x-2)(x+2)}$
(c) $f(x)=\frac{x^{2}-4}{x-1}$
(d) $f(x)=\frac{x^{2}-3}{(x-2)(x+2)}$

Solution:

I. Note from the graph we have Vertical Asymptotes at $x=-2$ and $x=2$.
II. Note that we have a Horizontal Asymptote at $y=1$.
III. By part (a), we have to have $(x-2)(x+2)$ in our denominator. i.e. We can eliminate the following choices.

$$
\begin{array}{llll}
\mathrm{X} & \mathrm{~B} & \mathbb{D}
\end{array}
$$

By part (b), the difference between the leading terms of the numerator and denominator has to be 0. i.e. The leading terms has the same degree. Hence D is our answer.
2. Using the graph below, answer the following questions:

I. Determine the vertical asymptote(s).
II. Determine the horizontal/slant asymptote.
III. Using I and II, determine which function below represents the graph?
(a) $f(x)=\frac{2 x^{2}+1}{x-1}$
(b) $f(x)=\frac{x^{2}}{(x-1)(x+1)}$
(c) $f(x)=\frac{x^{2}}{x-1}$
(d) $f(x)=\frac{x-1}{x^{2}}$

Solution:

I. Note from the graph we have Vertical Asymptotes ONLY at $x=1$.
II. Note that we have a Slant Asymptote at $y=x+1$.
III. By part (a), we have to have $x-1$ in our denominator. i.e. We can eliminate the following choices.

A B C 区

By part (b), notice that we have a Slant Asymptote. i.e. The difference between the leading terms of the numerator and denominator has to be 1. Since A and C, both satisfy this condition, we have to perform Synthetic Division which yields C is our answer.

