MA 16010 LESSON 11+12: RELATED RATES HANDOUT

Related Rates are word problems that use implicit differentiation.

We will be taking the derivative of equations with respect to time, t.

Recipe for Solving a Related Rates Problem

- **Step 1:** Draw a good picture. Label all constant values and give variable names to any changing quantities.
- Step 2: Determine what information you KNOW and what you WANT to find.
- **Step 3:** Find an equation relating the relevant variables. This usually involves a formula from geometry, similar triangles, the Pythagorean Theorem, or a formula from trigonometry. **Use your picture!**
- **Step 4:** Use implicit differentiation to differentiate the equation with respect to time t.
- **Step 5:** Substitute in what you **KNOW** from **Step 2** and any information that your equation in **Step 3** can give you and solve for the quantity you **WANT**. Do **NOT** substitute before this step!

Some Useful Formulas

Right Triangle	<u>Triangle</u>	Trapezoid	Rectangular Box	Cone
Pythagorean	1	1	V = lwh	
Theorem:	$A = \frac{1}{2}bh$	$A = \frac{1}{2}(a+b)h$		$V = \frac{1}{3}\pi r^2 h$
	Z	Z	S = 2(hl + lw + hw)	3""
$a^2+b^2=c^2$				
	P = a + b + c			$SA = \pi r l + \pi r^2$
Rectangle	Circle	Sphere	Right Circular	
A = lw	$A = \pi r^2$	$A = \frac{4}{3}\pi r^3$	<u>Cylinder</u>	
		$A = \frac{1}{3}\pi$	$V = \pi r^2 h$	
P = 2l + 2w	$C=2\pi r$			
		$S=4\pi r^2$	$SA = 2\pi rh$	

Example 1: If x and y are both functions of t and $x + y^3 = 2$.

a) Find
$$\frac{dy}{dt}$$
 when $\frac{dx}{dt} = -2$ and $y = 1$

b) Find
$$\frac{dx}{dt}$$
 when $\frac{dy}{dt} = 3$ and $x = 1$

Example 2: A spherical balloon is being deflated at a constant rate of 20 cubic cm per second. How fast is the radius of the balloon changing at the instant when the balloon's radius is 12 cm?

cm?
alues and give variable names to any changing quantities.
NOW and what you WANT to find.
WANT:
nt variables.
rentiate the equation with respect to time <i>t</i> .
a Step 2 and any information that your equation in Step 3 can give ANT.

radius of 22 cm for the base. How fast do	g upright (with one circular base on the ground) has a best he water level in the tank drop when the water is formula right circular cylinder is $V = \pi r^2 h$.
Step 1: Draw a picture. Label all constant value	es and give variable names to any changing quantities.
Step 2: Determine what information you KNO	W and what you WANT to find.
KNOW:	WANT:
Step 3: Find an equation relating the relevant va	ariables.
Step 4: Use implicit differentiation to differentiation	ate the equation with respect to time t .
Step 5: Substitute in what you KNOW from Ste you and solve for the quantity you WAN	ep 2 and any information that your equation in Step 3 can give T.

Example 4: A	plane is flying	directly	away from	you at 500	0 mph at a	n altitude
of 3 miles.						

a) How fast is the plane's distance from you increasing at the moment when the plane is flying over a point on the ground 4 miles from you?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities. Step 2: Determine what information you KNOW and what you WANT to find. **KNOW: WANT: Step 3:** Find an equation relating the relevant variables. **Step 4:** Use implicit differentiation to differentiate the equation with respect to time t.

Step 5: Substitute in what you **KNOW** from **Step 2** and any information that your equation in **Step 3** can give you and solve for the quantity you WANT.

Example 4: A plane is flying directly away from you at 500 mph at an altitude of 3 miles.

b) How fast is the angle of elevation changing when it is $\pi/3$?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities. Step 2: Determine what information you KNOW and what you WANT to find. **KNOW: WANT: Step 3:** Find an equation relating the relevant variables. **Step 4:** Use implicit differentiation to differentiate the equation with respect to time t.

Step 5: Substitute in what you **KNOW** from **Step 2** and any information that your equation in **Step 3** can give you and solve for the quantity you WANT.

Example 5: A ladder 5 meters long rests on horizontal ground and leans against a vertical wall. The foot of the ladder is pulled away from the wall at the rate of 0.3 m/sec. How fast is the top sliding down the wall when the foot of the ladder is 3 m from the wall?

of the ladder is 3 m from the wall?	
Step 1: Draw a picture. Label all constant values and give variab	le names to any changing quantities.
Step 2: Determine what information you KNOW and what you	WANT to find.
KNOW:	WANT:
Step 3: Find an equation relating the relevant variables.	
Step 4: Use implicit differentiation to differentiate the equation v	with respect to time <i>t</i> .
Step 5: Substitute in what you KNOW from Step 2 and any infor you and solve for the quantity you WANT.	rmation that your equation in Step 3 can give

Example 6: A baseball diamond is a square 90 ft on a side. A player runs from first base to second base at 14 ft/sec. At what rate is the player's distance from home base increasing when he is halfway from first to second base?

home base increasi	ng when he is halfway fro	om first to second base?
Step 1: Draw a picture. La	ibel all constant values and give var	iable names to any changing quantities.
Step 2: Determine what in	formation you KNOW and what you	ou WANT to find.
KNOW:		WANT:
Step 3: Find an equation re	elating the relevant variables.	
Step 4: Use implicit differ	rentiation to differentiate the equation	on with respect to time <i>t</i> .
Stan 5: Substitute in what y	you KNOW from Stan 2 and any in	nformation that your equation in Step 3 can give
you and solve for th	ne quantity you WANT.	normation that your equation in Step 3 can give