MA 16010 LESSON 11+12: RELATED RATES HANDOUT

Related Rates are word problems that use implicit differentiation.

We will be taking the derivative of equations with respect to time, t.

Recipe for Solving a Related Rates Problem

- **Step 1:** Draw a good picture. Label all constant values and give variable names to any changing quantities.
- Step 2: Determine what information you KNOW and what you WANT to find.
- **Step 3:** Find an equation relating the relevant variables. This usually involves a formula from geometry, similar triangles, the Pythagorean Theorem, or a formula from trigonometry. **Use your picture!**
- Step 4: Use implicit differentiation to differentiate the equation with respect to time t.
- **Step 5:** Substitute in what you **KNOW** from **Step 2** and any information that your equation in **Step 3** can give you and solve for the quantity you **WANT**. Do **NOT** substitute before this step!

Some Useful Formulas

Right Triangle	<u>Triangle</u>	Trapezoid	Rectangular Box	Cone
Pythagorean	1	1	V = lwh	
Theorem:	$A = \frac{1}{2}bh$	$A = \frac{1}{2}(a+b)h$		$V = \frac{1}{3}\pi r^2 h$
	2	2 ` '	S = 2(hl + lw + hw)	$V = \frac{1}{3}\pi r \pi$
$a^2+b^2=c^2$				
	P = a + b + c			$SA = \pi r l + \pi r^2$
				4
Rectangle	Circle	Sphere	Right Circular	
A = lw	$A = \pi r^2$	$A = \frac{4}{3}\pi r^3$	Cylinder	
		$A = \frac{\pi}{3}\pi r^3$	$V = \pi r^2 h$	
P = 2l + 2w	$C=2\pi r$			
	G 2111	$S=4\pi r^2$	$SA = 2\pi rh$	
		*****	DI ZITI	
		L		

Example 1: If x and y are both functions of t and $x + y^3 = 2$.

a) Find
$$\frac{dy}{dt}$$
 when $\frac{dx}{dt} = -2$ and $y = 1$

$$\frac{d}{dt}(x+y^3) = \frac{d}{dt}(2)$$

$$\frac{d}{dt}(x) + \frac{d}{dt}(y^3) = \frac{d}{dt}(2)$$

$$1 \cdot \frac{dx}{dt} + 3y^2 \frac{dy}{dt} = 0$$

Now plug
$$\frac{dx}{dt} = -2$$
 and $y = 1$

$$-2 + 3(1)^{2} \frac{dy}{dt} = 0$$

$$3 \frac{dy}{dt} = 2$$

$$\frac{dy}{dt} = \frac{2}{3}$$

b) Find $\frac{dx}{dt}$ when $\frac{dy}{dt} = 3$ and x = 1

From a, we found
$$\frac{dx}{dt} + 3y^{2} \frac{dy}{dt} = 0$$
Plug $\frac{dy}{dt} = 3$ and $x = 1$

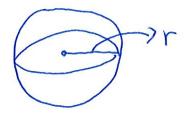
$$\frac{dx}{dt} + 3y^{2} \cdot 3 = 0$$

$$\frac{dx}{dt} = -9y^{2}$$

$$\frac{dx}{dt} = -9 \cdot 1^2 = -9$$

Example 2: A spherical balloon is being deflated at a constant rate of 20 cubic cm per second. How fast is the radius of the balloon changing at the instant when the balloon's radius is 12 cm?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.



Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:
$$\frac{dV}{dt} = -20 \frac{\text{cm}^3}{5}$$

Step 3: Find an equation relating the relevant variables.

$$V = \frac{4}{3} Mr^3$$

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

$$\frac{d}{dt}(v) = \frac{d}{dt}\left(\frac{4}{3}\pi r^3\right)$$

$$\frac{dV}{dt} = \frac{4}{3}\pi \cdot 3r^2 \frac{dr}{dt}$$

$$\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$$

you and solve for the quantity you
$$-20 = 4\% (12)^2 \frac{dr}{dt}$$

$$\frac{-20}{4 \operatorname{in}(12)^{2}} = \frac{dr}{dt}$$

$$\frac{dr}{dt} = \frac{-5}{144}$$

$$\frac{dr}{dt} = \frac{1}{144}$$

Example 3: A cylindrical tank standing upright (with one circular base on the ground) has a radius of 22 cm for the base. How fast does the water level in the tank drop when the water is being drained at 28 cm³/sec? Note: The formula right circular cylinder is $V = \pi r^2 h$.

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

Step 3: Find an equation relating the relevant variables.

$$V = \pi r^2 h \iff V = \pi (22)^2 h$$

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

$$\frac{d}{dt}(V) = \frac{d}{dt}(M \cdot (22)^{2}h)$$

$$\frac{dV}{dt} = M \cdot (22)^{2} \cdot \frac{dh}{dt}$$

$$-28 = 11 \cdot (22)^{2} \frac{dh}{dt}$$

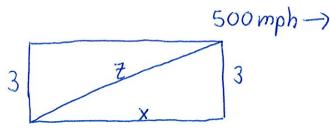
$$\frac{dh}{dt} = -\frac{28}{11 \cdot (22)^{2}}$$

$$\frac{dh}{dt} = -\frac{7}{12111}$$

Example 4: A plane is flying directly away from you at 500 mph at an altitude of 3 miles.

a) How fast is the plane's distance from you increasing at the moment when the plane is flying over a point on the ground 4 miles from you?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.



Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:
$$\frac{dx}{dt} = 500 \text{mph}$$
 WANT: $\frac{dz}{dt} |_{x=4}$

Step 3: Find an equation relating the relevant variables.

$$x^2 + 3^2 = z^2$$
 $\implies x^2 + 9 = z^2$

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

$$\frac{d}{dt}(x^2+q) = \frac{d}{dt}(z^2)$$

$$\frac{dz}{dt} = \frac{x}{z} \cdot \frac{dx}{dt}$$

$$2x \frac{dx}{dt} = 2z \frac{dz}{dt}$$

$$\frac{2x}{2z} \frac{dx}{dt} = \frac{dz}{dt}$$

you and solve for the quantity you WANT. Find
$$\Xi$$
 by plugging $x=4$ into $\frac{d\Xi}{dt} = \frac{4}{Z}$. $\frac{500}{Z} = \frac{2000}{Z}$

$$= \frac{2000}{5}$$

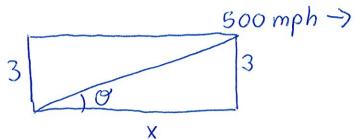
$$= \frac{2000}{5}$$

$$= 5$$

Example 4: A plane is flying directly away from you at 500 mph at an altitude of 3 miles.

b) How fast is the angle of elevation changing when it is $\pi/3$?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.



Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:
$$\frac{dx}{dt} = 500 \text{ mph}$$

Step 3: Find an equation relating the relevant variables.

$$\tan \theta = \frac{3}{x}$$
 \iff $\tan \theta = 3x^{-1}$

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

$$\frac{d}{dt}(\tan \theta) = \frac{d}{dt}(3x^{-1})$$

$$\sec^2 \theta \frac{d\theta}{dt} = -3x^{-2} \frac{dx}{dt}$$

$$\sec^2 \theta \frac{d\theta}{dt} = -\frac{3}{x^2} \frac{dx}{dt}$$

$$\frac{1}{\cos^2 \theta} \frac{d\theta}{dt} = \frac{-3}{x^2} \frac{dx}{dt}$$

$$\frac{d\theta}{dt} = \frac{-3}{x^2} \cdot \cos^2 \theta \cdot \frac{dx}{dt}$$

$$\frac{dO}{dt} = \frac{-3}{x^2} \cdot \left(\cos\left(\frac{x}{3}\right)^2 \cdot 500\right)$$

$$= \frac{-3}{x^2} \cdot \left(\frac{1}{2}\right)^2 \cdot 500$$

$$= \frac{-375}{x^2}$$

$$= -375$$

$$= -125$$

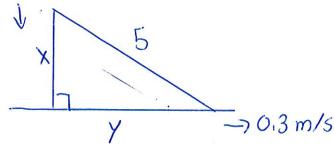
any information that your equation in Step 3 can give

Find x by plugging
$$O = M/3$$
 into

 $tanO = \frac{3}{x}$
 $tan\left(\frac{M}{3}\right) = \frac{3}{x}$
 $\sqrt{3!} = \frac{3}{x}$
 $x = \frac{3}{\sqrt{3!}} = x^2 = \frac{9}{3} = 3$

Example 5: A ladder 5 meters long rests on horizontal ground and leans against a vertical wall. The foot of the ladder is pulled away from the wall at the rate of 0.3 m/sec. How fast is the top sliding down the wall when the foot of the ladder is 3 m from the wall?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.



Step 2: Determine what information you KNOW and what you WANT to find.

WANT:
$$\frac{dx}{dt} |_{y=3}$$

Step 3: Find an equation relating the relevant variables.

$$\chi^2 + y^2 = 5$$

$$x^2 + y^2 = 5^2$$
 $\implies x^2 + y^2 = 25$

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

$$\frac{d}{dt}(x^2+y^2) = \frac{d}{dt}(25)$$

$$2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$$

$$2x \frac{dx}{dt} = -2y \frac{dy}{dt}$$

$$\frac{d}{dt}(x^2+y^2) = \frac{d}{dt}(25) \qquad \left| \frac{1}{2x} \cdot \frac{2x}{dt} \right| = \frac{1}{2x} \cdot \frac{(-2y)}{dt}$$

$$2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0 \qquad \frac{dx}{dt} = -\frac{1}{2x} \cdot \frac{dy}{dt}$$

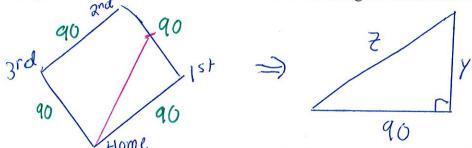
$$2x \frac{dx}{dt} = -2y \frac{dy}{dt}$$

$$\frac{dx}{dt} = \frac{-3}{x} \cdot 0.3 = -0.9 \\ \frac{dx}{dt} = -0.9 = -0.225$$

Find x by plugging
$$y=3$$
 into $x^2+y^2=25$
 $x^2+3^2=25$
 $x^2=25-9=16$
 $x=4$

Example 6: A baseball diamond is a square 90 ft on a side. A player runs from first base to second base at 14 ft/sec. At what rate is the player's distance from home base increasing when he is halfway from first to second base?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.



Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:
$$\frac{dy}{dt} = 14 \frac{ft}{5}$$

WANT:
$$\frac{dz}{dt}$$
 $y = \frac{90}{3} = 468t$

Step 3: Find an equation relating the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

$$\frac{d}{dt}(90^2+y^2) = \frac{d}{dt}(z^2)$$

$$2y\frac{dy}{dt} = 2z\frac{dz}{dt}$$

$$\frac{2y}{2z}\frac{dy}{dt} = \frac{dz}{dt}$$

$$\frac{d^{2}}{dt} = \frac{45 \cdot 14}{2} \cdot \frac{14}{2}$$

$$\frac{d^{2}}{dt} = \frac{45 \cdot 14}{2} = \frac{14}{45 \cdot \sqrt{5}}$$

Find
$$z = 2$$
 by plugging $z = 4$ into $z = 2$ $z = 4$ $z = 4$