
MA 16010 LESSON 17: GRAPHICAL INTERPRETATION OF DERIVATIVES

So far, we have learned that:

X-value	1. Critical Number:	X-values where f'(x)=0 or
		f'(x) DNE
interval	2. Increasing:	f'(x)>0
interval	3. Decreasing:	f'(x) < 0
Point	4. Relative Max:	· Create # line with @ and 3
		. Then apply First/Second
Poin't	5. Relative Min:	Derivative Test
interval	6. Concave Up:	f"(x)>0
interval	7. Concave Down:	P"(x)<0
point	8. Inflection Point:	· Create # line with @ and D.
		· Check for change of concavity

(a) Critical Number(s):

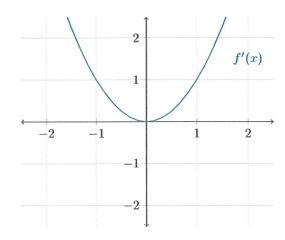
(b) Increasing Interval(s):

$$(0,\infty)$$

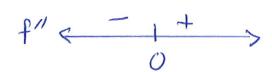
(c) Decreasing Interval(s):

$$(-\infty/0)$$

(d) Relative Maximum Occurs:


(e) Relative Minimum Occurs:

$$X = 0$$


(f) Concave Up Interval(s):

$$(-\infty/\infty)$$

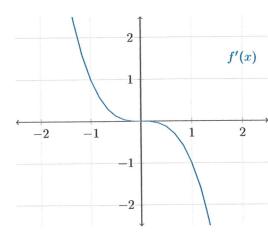
(g) Concave Down Interval(s):

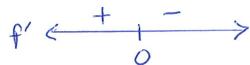
(a) Critical Number(s):

(b) Increasing Interval(s):

(c) Decreasing Interval(s):

(d) Relative Maximum Occurs:


(e) Relative Minimum Occurs:


(f) Concave Up Interval(s):

$$(0,\infty)$$

(g) Concave Down Interval(s):

$$(-\infty,0)$$

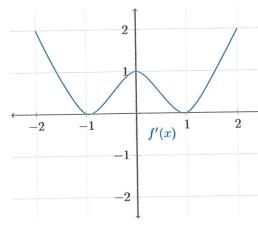
(a) Critical Number(s):

$$X = 0$$

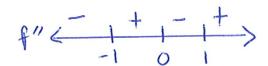
(b) Increasing Interval(s):

$$(-\infty,0)$$

(c) Decreasing Interval(s):


$$(0,\infty)$$

(d) Relative Maximum Occurs:


(e) Relative Minimum Occurs:

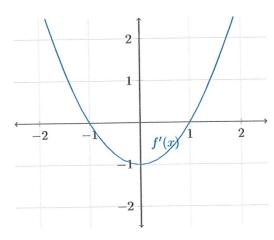
(f) Concave Up Interval(s):

(g) Concave Down Interval(s):

(a) Critical Number(s):

(b) Increasing Interval(s):

(c) Decreasing Interval(s):


(d) Relative Maximum Occurs:

(e) Relative Minimum Occurs:


(f) Concave Up Interval(s):

(g) Concave Down Interval(s):

$$(-\infty, -1) \cup (0, 1)$$

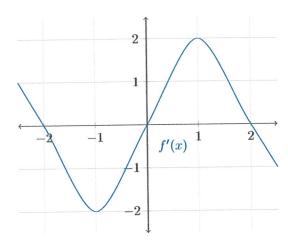
(a) Critical Number(s):

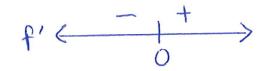
(b) Increasing Interval(s):

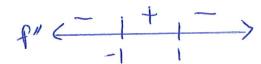
$$(-\infty, -1) \cup (1, \infty)$$

(c) Decreasing Interval(s):

$$(-1/1)$$


(d) Relative Maximum Occurs:


(e) Relative Minimum Occurs:


(f) Concave Up Interval(s):

(g) Concave Down Interval(s):

$$(-\infty,0)$$

(a) Critical Number(s):

(b) Increasing Interval(s):

$$(0,\infty)$$

(c) Decreasing Interval(s):

(d) Relative Maximum Occurs:

(e) Relative Minimum Occurs:

(f) Concave Up Interval(s):

$$(-1, 1)$$

(g) Concave Down Interval(s):

(h) Inflection Point(s) Occurs:

Summary: When given the graph of f',

1. Critical Number:	where the graph touches/
	crosses the x-axis
	1 - He and is about the
2. Increasing:	where the graph is above the
	x-axis
3. Decreasing:	where the graph is below the
	x-axis
4. Relative Max Occurs:	· Create # line with @ and @
	. Then apply First/Second
5. Relative Min Occurs:	Derivative Test
6. Concave Up:	where the slope of P' is positive
	· ·
7. Concave Down:	where the slope of f' is pegative
	Combatter Will Band G
8. Inflection Point Occurs:	· Create It line with 6 and 6
	· Check for change in sign