MA 16010 LESSONS 20+21: OPTIMIZATION

Optimization Problems: Often this includes finding the maximum or minimum value of some function.

- · e.g. The minimum time to make a certain journey,
- e.g. The minimum cost for constructing some object,
- e.g. The maximum profit to gain for a business, and so on.

How do we solve an optimization problem?

- Determine a function (known as objective function) that we need to maximize or minimize.
- Determine if there are some constraints on the variables. (The equations that describe the constraints are called **the constraint equations**.)
 - o If there are constraint equations, rewrite the **objective function** as a function of only one variable.
- Then we can solve for absolute maximum or minimum like we did before.
 Using either the First Derivative Test or Second Derivative Test.

Recipe for Solving an Optimization Problem

- Step 1: Identify what quantity you are trying to optimize.
- **Step 2:** Draw a picture (if applicable), corresponding to the problem, and label it with your variables.
- Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.
- **Step 4:** Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.
- **Step 5:** Find the absolute extrema of the variable to be optimized on this domain.
- **Step 6:** Reread the question and be sure you have answered exactly what was asked.

Example 1: Of all the numbers whose sum is 50, find the two that have the maximum product. Let x and y be such #\$.

Step 1: Identify what quantity you are trying to optimize. Product, P

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Find the absolute extrema of the variable to be optimized on this domain.

Solve
$$\mathcal{G}$$
 for y , Find P' and $set=0$, $y=50-x$ $P'=50-2x=0$ $50=2x$ $25=x$ $P=xy$ $=x(50-x)$ $=50x-x^2$

$$(x=25)$$
 $y=50-x$
= 50-25
 $(y=25)$

Example 2: A carpenter is building a rectangular room with a fixed perimeter of 54 feet. What are the dimensions of the largest room that can be built? What is its area?

Step 1: Identify what quantity you are trying to optimize. Area, A

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

$$2x + 2y = 54$$

$$2x + 2y = 54$$
 \iff $x + y = 27$

Step 5: Find the absolute extrema of the variable to be optimized on this domain.

Solve
$$\mathcal{G}$$
 for y. $y = 27 - x$

Find A' and set = 0.

$$A' = 27 - 2x = 0$$

 $x = 27/2$

$$X = \frac{27}{2} \Rightarrow Y = \frac{27 - x}{y = \frac{27}{2}}$$
 Area = $\frac{27}{2} \times \frac{27}{2} = \frac{749}{4}$

Example 3: An open-top box with a square base is to have a volume of 8 cubic feet. Find the dimensions of the box that can be made with the least amount of material.

Step 1: Identify what quantity you are trying to optimize. Surface Area, A

Step 2: Draw a picture (if

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

$$A = \chi^2 + 4 \chi y$$

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

$$8 = V = \chi^2 \gamma$$

Step 5: Find the absolute extrema of the variable to be optimized on this domain.

Solve
$$\textcircled{9}$$
 for y ,
$$\frac{8}{x^2} = y$$
Plug y into $\textcircled{3}$,
$$A = x^2 + 4x \left(\frac{8}{x^2}\right)$$

$$= x^2 + \frac{32}{x}$$

Rewrite A to be

$$A = x^2 + 32x^{-1}$$

Find A' and set=0.

 $A' = 2x - 32x^{-2} = 0$
 $2x^3 = 32$
 $x^3 = 16$
 $x = 3\sqrt{16}$
 $x = 3\sqrt{16}$
 $2x = 3\sqrt{2}$

$$\chi = 3\sqrt{16} \implies \gamma = \frac{8}{\chi^2}$$

$$= \frac{8}{16^{2/3}}$$

Example 4: From a thin piece of cardboard 20 in by 20 in, square corners are cut out so that the sides can be folded up to make a box. What dimensions will yield a box of maximum volume? What is the maximum volume?

Step 1: Identify what quantity you are trying to optimize.

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

$$V = \times (20 - 2 \times)^{3}$$

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Find the absolute extrema of the variable to be optimized on this domain.

Find V' and set = 0.

$$V' = 1 \cdot (20 - 2x)^{2} + X \cdot 2(20 - 2x) \cdot (-2) = 0$$

$$(20 - 2x) [20 - 2x - 4x] = 0$$

$$(20 - 2x) (20 - 6x) = 0$$

$$20 - 2x = 0$$

$$20 - 6x = 0$$

$$x = \frac{20}{6} = \frac{10}{3}$$
or width.

$$x = height = \frac{10}{3}$$
 width = length = $\frac{20 - 2x}{3}$ Dimensions: $\frac{10}{3} \times \frac{40}{3} \times \frac{40}{3}$

$$= \frac{40}{3}$$
 Volume: $\frac{16000}{27}$

Example 5: A rectangular box has a square base. If the sum of the height and the perimeter of the square base is 20 in, what is the maximum possible volume?

Step 1: Identify what quantity you are trying to optimize. Volume

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

$$V = \chi^2 \gamma$$

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

$$y + 4x = 20$$

Step 5: Find the absolute extrema of the variable to be optimized on this domain.

Solve 9 for y,

$$y = 20 - 4x$$

Plug Y into 3,
 $V = x^2(20 - 4x)$
 $= 20x^2 - 4x^3$

Find V'and set =0,

$$V' = .40x - 12x^2 = 0$$

 $4x(10 - 3x) = 0$
 $4x = 0$ $10 - 3x = 0$
 $x = 10$
 3

b/c if not we have no base.

$$x = \frac{10}{3} = y = 20 - 4x$$

= $20 - 4(\frac{10}{3})$
= $\frac{20}{3}$

Volume =
$$\chi^2 y$$

= $(\frac{10}{3})^2 \cdot \frac{20}{3} = \frac{2000}{27}$

Example 6: A company's marketing department has determined that if their product is sold at the price of p dollars per unit, they can sell q = 2400 - 200p units. Each unit costs \$5 to make.

b) What price, p, should the company charge to maximize their profit?

Step 1: Identify what quantity you are trying to optimize. Profit, P

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Find the absolute extrema of the variable to be optimized on this domain.

Plug (9) into (3),

$$\Gamma^{2}(p-5)(2400-200p)$$

= -200(p-5)(p-12)
=-200(p²-17p+60)

Find P' and set = 0,

$$P' = -200(2p-17) = 0$$

 $P = \frac{17}{2} = 8.5$

Example 6: A company's marketing department has determined that if their product is sold at the price of p dollars per unit, they can sell q = 2400 - 200p units. Each unit costs \$5 to make.

- a) What price, p, should the company charge to maximize their revenue?
- Step 1: Identify what quantity you are trying to optimize. Revenue, R
- **Step 2:** Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Find the absolute extrema of the variable to be optimized on this domain.

Example 7: A rectangular box is to have a square base and a volume of 800 ft^3 . If the material for the base costs \$2 per square foot, the material for the sides costs \$4 per square foot, and the material for the top costs \$1 per square foot, determine the minimum cost for constructing such a box.

Step 1: Identify what quantity you are trying to optimize. _____Cost, C

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Find the absolute extrema of the variable to be optimized on this domain.

Solve
$$\mathcal{G}$$
 for y ,

 $y = \frac{800}{x^2}$

Plug y into \mathcal{G} ,

 $C = 3x^2 + 16 \times \left(\frac{800}{x^2}\right)$
 $= 3x^2 + 12800$
 $= 3x^2 + 12800x^{-1}$

Find C' and set = 0,

C'=
$$6x - 12800x^{-2} = 0$$
 $6x - 12800 = 0$
 $6x = 12800$
 $6x^{2} = 12800$
 $6x^{3} = 12800$
 $6x^{3} = 6400$
 $6x^{3} = 12800$
 $6x^{3} = 12800$

$$X = 3 \sqrt{\frac{6400}{3}} \Rightarrow Y = \frac{800}{(6400)^{2/3}}$$
 C = \$62, 14

Example 8: Find the point on the graph of f(x) = 2x + 4 that is the closest to the point (1,3).

Step 1: Identify what quantity you are trying to optimize.

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

$$D = (x-1)^2 + (y-3)^2$$

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Find the absolute extrema of the variable to be optimized on this domain.

Plug
$$\mathfrak{G}$$
 into \mathfrak{G}_{1}

$$D = (x-1)^{2} + (2x+4-3)^{2}$$

$$= (x-1)^{2} + (2x+1)^{2}$$

$$D' = 2(x-1) + 2(2x+1) \cdot 2 = 0$$

$$2x-2 + 4(2x+1) = 0$$

$$2x-2 + 8x + 4 = 0$$

$$10x + 2 = 0$$

$$x = -16$$
Step 6: Reread the question and be sure you have answered exactly what was asked.

$$x = -\frac{1}{5} \Rightarrow y = \frac{2x + 4}{5}$$
 $\left(-\frac{1}{5}, \frac{18}{5}\right)$