Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. [$\mathbf{3} \mathbf{p t s}$] The derivative of a function is found by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{3 \sin (x+h)}{\sqrt{x+h}}-\frac{3 \sin x}{\sqrt{x}}}{h}
$$

What is $f(x)$?

Solution: Recall that

$$
f^{\prime}(x)=\lim h \rightarrow 0 \frac{f(x+h)-f(x)}{h}
$$

It is enough to focus our attention to the purple portion to determine $f(x)$. So

$$
f(x)=\frac{3 \sin (x)}{\sqrt{x}} \quad[\mathbf{3} \mathbf{~ p t s}]
$$

2. Find the derivative of the following functions:
(a) $[\mathbf{1} \mathbf{~ p t}] f(x)=3 e^{x}$
(b) $[\mathbf{1} \mathbf{p t}] g(x)=7 \cos (x)$

Solution: Recall that

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

So $f^{\prime}(x)=3 e^{x}$
Solution: Recall that

$$
\frac{d}{d x}(\cos x)=-\sin x
$$

So $g^{\prime}(x)=-7 \sin x$
(c) $[\mathbf{3} \mathbf{p t s}] h(x)=\sqrt[3]{x^{2}}+\frac{3}{x^{4}}-x$

Solution: Rewrite $h(x)$.

$$
h(x)=x^{2 / 3}+3 x^{-4}-x
$$

By Power Rule,

$$
h^{\prime}(x)=\frac{2}{3} x^{-1 / 3}+3(-4) x^{-5}-1=\frac{2}{3} x^{-1 / 3}-12 x^{-5}-1
$$

3. [4 pts] Let $w(x)=4 \sin x\left(\sqrt[3]{x^{2}}+\frac{3}{x^{4}}-x\right)$. Find $w^{\prime}(x)$. (Don't Simplify.)

Solution:

$$
\text { Let } \begin{aligned}
u(x) & =4 \sin (x) & v(x) & =\sqrt[3]{x^{2}}+\frac{3}{x^{4}}-x \\
u^{\prime}(x) & =4 \cos (x) & v^{\prime}(x) & =\frac{2}{3} x^{-1 / 3}-12 x^{-5}-1
\end{aligned}
$$

By Product Rule,

$$
\begin{aligned}
w^{\prime}(x) & =u^{\prime}(x) v(x)+u(x) v^{\prime}(x) \\
& \left.=(4 \cos (x))\left(\sqrt[3]{x^{2}}+\frac{3}{x^{4}}-x\right)+(4 \sin (x))\left(\frac{2}{3} x^{-1 / 3}-12 x^{-5}-1\right)\right)
\end{aligned}
$$

