Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. Find the derivative of the following functions:
(a) $[\mathbf{3} \mathbf{p t s}] f(x)=(3 x-1)^{100}$

Solution:

$$
\begin{array}{llll}
\text { Let } & u(x)=x^{100} & \text { and } & v(x)=3 x-1 \\
\text { Then } & u^{\prime}(x)=100 x^{99} & \text { and } & v^{\prime}(x)=3
\end{array}
$$

By Chain Rule,

$$
\begin{aligned}
f^{\prime}(x) & =u^{\prime}(v(x)) \cdot v^{\prime}(x) \\
& =u^{\prime}(3 x-1) \cdot 3 \\
& =100(3 x-1)^{99} \cdot 3 \\
& =300(3 x-1)^{99}
\end{aligned}
$$

(b) $[4$ pts $] g(x)=20 \tan ^{2}(5 x+1)$

Solution: First rewrite $g(x)$. So

$$
g(x)=20(\tan (5 x+1))^{2}
$$

Note to find the derivative of this function, we need to take apply Chain Rule twice.

Then $\quad u^{\prime}(x)=40 x \quad$ and $\quad v^{\prime}(x)=a^{\prime}(b(x)) \cdot a(x)$
$v^{\prime}(x)=a^{\prime}(5 x+1) \cdot 5$

$$
v^{\prime}(x)=\sec ^{2}(5 x+1) \cdot 5
$$

By Chain Rule,

$$
\begin{aligned}
g^{\prime}(x) & =u^{\prime}(v(x)) \cdot v^{\prime}(x) \\
& =u^{\prime}(\tan (5 x+1)) \cdot 5 \sec ^{2}(5 x+1) \\
& =40(\tan (5 x+1)) \cdot 5 \sec ^{2}(5 x+1) \\
& =200 \tan (5 x+1) \sec ^{2}(5 x+1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } \quad u(x)=20 x^{2} \text { and } \quad v(x)=\tan (5 x+1) \\
& a(x)=\tan (x) \quad b(x)=5 x+1 \\
& a^{\prime}(x)=\sec ^{2}(x) \quad b^{\prime}(x)=5
\end{aligned}
$$

2. [5 pts] Find the second derivative of $h(x)=\ln \sqrt{x^{2}+2}$

Solution: First let's rewrite $h(x)$ so that taking the derivative can be easier. Using logarithmic properties,

$$
h(x)=\ln \sqrt{x^{2}+2}=\ln \left(x^{2}+2\right)^{1 / 2}=\frac{1}{2} \ln \left(x^{2}+2\right)
$$

Now let's apply Chain Rule.

$$
\begin{array}{llll}
\text { Let } & u(x)=\frac{1}{2} \ln (x) & \text { and } & v(x)=x^{2}+2 \\
\text { Then } & u^{\prime}(x)=\frac{1}{2} \cdot \frac{1}{x} & \text { and } & v^{\prime}(x)=2 x
\end{array}
$$

By Chain Rule,

$$
\begin{aligned}
h^{\prime}(x) & =u^{\prime}(v(x)) \cdot v^{\prime}(x) \\
& =u^{\prime}\left(x^{2}+2\right) \cdot(2 x) \\
& =\frac{1}{2} \cdot \frac{1}{x^{2}+2} \cdot(2 x) \\
& =\frac{x}{x^{2}+2}
\end{aligned}
$$

Note that we want the SECOND DERIVATIVE. Notice that now we have a quotient so let's use Quotient Rule on $h^{\prime}(x)$.

$$
\begin{array}{llll}
\text { Let } & u(x)=x & \text { and } & v(x)=x^{2}+2 \\
\text { Then } & u^{\prime}(x)=1 & \text { and } & v^{\prime}(x)=2 x
\end{array}
$$

By Quotient Rule,

$$
\begin{aligned}
h^{\prime \prime}(x) & =\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{v^{2}(x)} \\
& =\frac{1 \cdot\left(x^{2}+2\right)-x \cdot(2 x)}{\left(x^{2}+2\right)^{2}} \\
& =\frac{x^{2}+2-2 x^{2}}{\left(x^{2}+2\right)^{2}} \\
& =\frac{2-x^{2}}{\left(x^{2}+2\right)^{2}}
\end{aligned}
$$

