Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. Given the graph of $f^{\prime}(x)$ below, answer the following question for $f(x)$.

(a) [1 pt] Critical Number(s):

$$
x=-2,1,3
$$

(b) $[\mathbf{1} \mathbf{p t}]$ Increasing Interval(s):

$$
(-\infty, 1) \cup(3, \infty)
$$

(c) [1 pt] Decreasing Interval(s):
(d) $[\mathbf{1} \mathbf{~ p t}]$ Relative Maximum Occurs at

$$
x=1
$$

(e) $[\mathbf{1} \mathbf{p t}]$ Relative Minimum Occurs at

$$
x=3
$$

(f) [1 pt] Concave Up Interval(s):

$$
(-2,0) \cup(2, \infty)
$$

(g) [1 pt] Concave Down Interval(s):

$$
(-\infty,-2) \cup(0,2)
$$

(h) [1 pt] Inflection Point(s) Occurs at

$$
x=-2,0,2
$$

2. [4 pts] Find the x-coordinate for the absolute max. of $f(x)=-x^{3}+12 x=0$ over the interval $[-3,5]$.

Solution:

First find when $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x)=-3 x^{2}+12=0 & {[\mathbf{1} \mathbf{~ p t}] } \\
-3\left(x^{2}-4\right)=0 & \\
x= \pm 2 & {[\mathbf{1} \mathbf{~ p t}] }
\end{aligned}
$$

So with those values determine the absolute maximum with the following table: [1 pt]

x	$f(x)$	Conclusion
-3	-9	
-2	-16	
2	16	Absolute max
5	-65	

Note that both $x=-2$ and $x=2$ are in our interval $[-3,5]$.

Hence we have an absolute maximum at $x=5$. [1 pt]

