Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. Given the following graph, answer the following questions:

(b) Using GEOMETRIC FORMULAS, evaluate the integral found in (a).

Solution: Using the graph above, we can find the area by using the trapezoid area formula or by splitting the graph into a rectangle and a triangle. Either way the

$$
A=12[\mathbf{3} \mathbf{p t s}]
$$

(a) $[\mathbf{3} \mathbf{~ p t s}]$ Write the definite integral that represents the shaded area.

Solution: We can see the bounds of the integral will be 0 to 4 . i.e.

$$
\int_{0}^{4} \square d x[\mathbf{1} \mathbf{~ p t}]
$$

Next we need to determine the equation of the dark blue line. Note that we have two points $(0,4)$ and $(4,2)$. So the slope of those two points is

$$
m=\frac{2-4}{4-0}=\frac{-1}{2} \quad[\mathbf{1} \mathbf{p t}]
$$

Note we also are given the y-intercept. So the equation of the line is

$$
y=-\frac{1}{2}+4
$$

Hence,

$$
\int_{0}^{4}\left(-\frac{1}{2} x+4\right) d x[\mathbf{1} \mathbf{p t}]
$$

2. [6 pts]

Given $\int_{-5}^{2} f(x) d x=1, \int_{-1}^{3} f(x) d x=4$ and $\int_{-5}^{3} f(x) d x=2$. Find $\int_{-1}^{2} f(x) d x$

Solution: Start by creating a number line with all the information given.

Note there are two ways of getting the correct answer.
(i) First find

$$
\int_{-5}^{-1} f(x) d x=\int_{-5}^{3} f(x)-\int_{-1}^{3} f(x) d x=2-4=-2 \quad[\mathbf{2} \mathbf{p t s}]
$$

Then

$$
\int_{-1}^{2} f(x) d x=\int_{-5}^{2} f(x) d x-\int_{-5}^{-1} f(x) d x=1-(-2)=3 \quad[\mathbf{2} \mathbf{~ p t s}]
$$

(ii) OR.... First find

$$
\int_{2}^{3} f(x) d x=\int_{-5}^{3} f(x)-\int_{-5}^{2} f(x) d x=2-1=1 \quad[2 \mathrm{pts}]
$$

Then

$$
\int_{-1}^{2} f(x) d x=\int_{-1}^{3} f(x) d x-\int_{2}^{3} f(x) d x=4-1=3 \quad[\mathbf{2} \mathbf{~ p t s}]
$$

