MA 16020 EXAM 2 STUDY GUIDE: CALCULUS II

When to use sulbstitution to integrate?

- When you have something containing a function (which we call u) and that something is multiplied by the derivative of u.
Ex. $\int f(u(x)) \cdot u^{\prime}(x) d x=\int f(u) d u$
- How do you use sulbstitution?
- Determine if there is an inner function and call that \boldsymbol{u}.
- Take the derivative of \boldsymbol{u}. So you have

$$
d u=u^{\prime}(x) d x
$$

- Solve for $\boldsymbol{d} \boldsymbol{x}$.
- Transform the integral using u and $d x$.

When to use partial fraction decomposition to integrate?

- When you have a fraction with polynomials on the numerator and denominator, and sulbstitution doesn't work.
- How do you use partial fraction decomposition?
- Decompose the fraction using the steps outlined in the Handout, METHOD OF DECOMPOSING INTO PARTIAL FRACTIONS.
- Note: Some integrals will yield $\ln \mid$? \mid and others will need a substitution.

When to use by parts to integrate?

- When all else fails
- How do you use by parts?
\circ Choose \boldsymbol{u} to be the one to differentiate
- Recall the acronym that tells how to choose u.

L - Logarithmic
A - Algebraic (like polynomials)
T-Trigonometric
E-Exponential

- Choose $\boldsymbol{d} \boldsymbol{v}$ to be integrated
\circ Determine $d \boldsymbol{u}$ and \boldsymbol{v} and apply the following formula:

$$
u \cdot v-\int v d u
$$

- Note:

1. You may have to do a substitution within your problem.
2. You may have to apply by parts more than once.

MA 16020 Exam 2 Study Guide: Cal 2
An improper integral is when
(1) we have $\pm \infty$ in the bounds, or
(2) we have a discontinuity within the bounds, \downarrow
Check if the integrand is undefined and check if that value is in the interval.
When computing them, rewrite with a limit

$$
\text { ex. } \int_{0}^{\infty} e^{-x} d x=\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-x} d x
$$

To review limit check MA 16020 Exam 2 Study Guide: Cal 1.
Area Between Two Curves
The area between two curves can be described

$$
\begin{aligned}
& \text { two ways: } \\
& A=\int_{a}^{b}(\text { Top-Bottom }) d x \rightarrow \text { You want } y=\text { Something } \\
& \text { for Top and Bottom }
\end{aligned} \quad \begin{aligned}
& \text { for }
\end{aligned}
$$

Volume of Solids of Revolution
Read the problem to see if a particular method is asked for. Plus try to draw the regions,

When the region "hugs the line of rotation \Rightarrow Disk

- x-axis $\Rightarrow d x$ problem $\Rightarrow V=\int_{a}^{b} \pi(f(x))^{2} d x$
- y-axis $\Rightarrow d y$ problem $\Rightarrow V=\int_{c}^{d} \pi(g(y))^{2} d y$
- the line $\Rightarrow d x$ problem $\Rightarrow V=\int_{a}^{b} \pi(f(x)-\#)^{2} d x$
- the line $\begin{gathered}x=\#\end{gathered} \Rightarrow d y$ problem $\Rightarrow V=\int_{e} d \pi(g(y)-\#)^{2} d y$

When there is a "gap" between the region and the line of rotation \Rightarrow Washer

- x-axis $\Rightarrow d x$ problem $\Rightarrow V=\int_{a}^{b} \pi\left(R^{2}-r^{2}\right) d x$
- y-axis $\Rightarrow d y$ problem $\Rightarrow V=\int_{0}^{d} \pi\left(R^{2}-r^{2}\right) d y$
- the line $\Rightarrow d x$ problem $\Rightarrow V=\int_{a}^{b} \pi\left[(R-\#)^{2}-(r-\#)^{2}\right] d x$
$y=\#$
- the line $\Rightarrow d y$ problem $\Rightarrow V=\int_{c}^{d} \pi\left[(R-\#)^{2}-(r-\#)^{2}\right] d y$ $x=\#$
Where R is the farthest from the line of rotation and r is the closest to the line of rotation
But if you find solving for x or y, in either method, is hard \Rightarrow shell

MA 16020 LESSON 18: VOLUME BY REVOLUTION SHELL METHOD (SUPPEMENTAL HOMEWORK)

Formulas:

- Rotating around y-axis:

$$
V=2 \pi \int_{a}^{b} x \cdot(\text { Top }- \text { Bottom }) d x
$$

- Rotating around $\mathbf{y}=\#$
- If $\boldsymbol{a} \geq$ \#, then

$$
V=2 \pi \int_{a}^{b}(x-\#) \times(\operatorname{Top}-\text { Bottom }) d x
$$

- If $b \leq \#$, then

$$
V=2 \pi \int_{a}^{b}(\#-x) \times(\operatorname{Top}-\text { Bottom }) d x
$$

- Rotating around x-axis:

$$
V=2 \pi \int_{c}^{d} y \cdot(\text { Right }-L e f t) d y
$$

- Rotating around $x=\#$
- If $\boldsymbol{a} \geq$ \#, then

$$
V=2 \pi \int_{a}^{b}(y-\#) \times(\text { Right }- \text { Left }) d y
$$

- If $\mathbf{b} \leq \#$, then
$V=2 \pi \int_{a}^{b}(\#-y) \times($ Right $-L e f t) d y$

