MA 16020 EXAM 3 STUDY GUIDE: ALGEBRA

DOMAIN & RANGE OF SINGLE VARIABLE FUNCTIONS

Recall the following common Domains and Ranges:

1. $y = e^x$ Domain: $(-\infty, \infty)$ Range: $(0, \infty)$

2. y = ln(x) Domain: $(0, \infty)$ Range: $(-\infty, \infty)$

Note that $y = e^x$ and y = ln(x) are inverses of each other. Which mean the domain of the first function is the range of the second (and vice versa).

3. $y = \sqrt{x}$ Domain: $[0, \infty)$ Range: $(-\infty, \infty)$

4. $y = \sqrt[3]{x}$ Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$

Note: Let $y = \sqrt[n]{x} = x^{1/n}$.

• If *n* is even, then **Domain:** $[0, \infty)$ Range: $(-\infty, \infty)$

• If *n* is odd, then **Domain:** $(-\infty, \infty)$ **Range:** $(-\infty, \infty)$

Techniques for finding the Domain:

• Given $\sqrt{?}$ then $? \ge 0$ • Given ln? then ? > 0

• Given $\frac{1}{2}$ then $? \neq 0$ • Given $\frac{1}{\sqrt{?}}$ then ? > 0

MA 16020 EXAM 3 STUDY GUIDE: ALGEBRA

USEFUL DEFINITIONS

1. Point at the origin \Rightarrow (0,0)

2. Lines $\Rightarrow y = mx + b$

where *m* is the slope and *b* is the y-intercept

3. Parabolas $\Rightarrow y = a(x-h)^2 + k$ where (h, k) is the vertex of the parabola

4. Exponential Functions

a. Increasing \Rightarrow example $y = e^x$

b. Decreasing \Rightarrow example $y = e^{-x}$

5. Logarithmic Functions

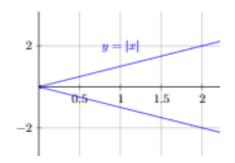
a. Increasing \Rightarrow example $y = \ln x$

b. Decreasing \Rightarrow example $y = -\ln x$

6. Rational Functions are functions of the form: $y = \frac{p(x)}{q(x)}$

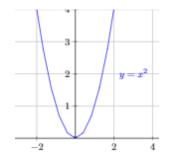
a. x-axis symmetry

$$\Rightarrow f(x) = -f(x)$$



b. y-axis symmetry

$$\Rightarrow f(x) = f(-x)$$



7. Circles $\Rightarrow (x-h)^2 + (y-k)^2 = r^2$

where r is radius and (h, k) is the center

8. Ellipses $\Rightarrow \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

where (h, k) is the center

9. Hyperbolas $\Rightarrow \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

where (h, k) is the center

To find the foci for 8 and 9, we use the equation $c^2 = a^2 + b^2$, and solve for c.