Please show **all** your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name:__

1. Evaluate the definite integral.

$$\int_0^{\pi/2} (x-1)\sin(x)\,dx$$

 $\int_{0}^{\pi/2} (x-1)\sin(x) \, dx = _$

2. Evaluate

$$\int 3x \ln(x^7) \, dx$$

$$3x\ln(x^7)\,dx =$$

3. Evaluate

 $\int x^3 \ln(2x) \, dx$

 $\int x^3 \ln(2x) \, dx = \underline{\qquad}$

4. Evaluate the definite integral.

 $\int_0^3 5x e^{3x} \, dx$

5. Evaluate the indefinite integral.

 $\int 4x \sin(7x) \, dx$

 $\int 4x \sin(7x) \, dx = \underline{\qquad}$

6. Evaluate the indefinite integral.

 $\int 6t\sqrt{2t+5}\,dt$

 $\int 6t\sqrt{2t+5}\,dt = _$

7. After t days, the growth of a plant is measured by the function $2000te^{-20t}$ inches per day. What is the change in the height of the plant (in inches) after the first 14 days?

Answer:_____

8. The velocity of a cyclist during an hour-long race is given by the function

$$v(t) = 166te^{-2.2t}$$
 mi/hr, $0 \le t \le 1$

Assuming the cyclist starts from rest, what is the distance in miles he traveled during the first hour of the race?

Answer:____

9. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$f(x) = \frac{3x+1}{x^2(x+1)^2(x^2+1)}$$
(A) $\frac{A}{x^2} + \frac{B}{(x+1)^2} + \frac{C}{x^2+1}$
(B) $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} + \frac{D}{(x+1)^2} + \frac{E}{x^2+1}$
(C) $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} + \frac{D}{(x+1)^2} + \frac{Ex+F}{x^2+1}$
(D) $\frac{A}{x} + \frac{Bx+C}{x^2} + \frac{D}{x+1} + \frac{Ex+F}{(x+1)^2} + \frac{Gx+H}{x^2+1}$
(E) $\frac{A}{x} + \frac{B}{(x+1)^2} + \frac{C}{x^2+1}$

10. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$f(x) = \frac{x^2 + 2x + 3}{(x-1)^2(x-2)(x^2+4)}$$
(A) $\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-2} + \frac{Dx+E}{x^2+4}$
(B) $\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-2} + \frac{D}{x^2+4}$
(C) $\frac{A}{x-1} + \frac{Bx+C}{(x-1)^2} + \frac{D}{x-2} + \frac{E}{x^2+4}$
(D) $\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-2} + \frac{Dx}{x^2+4}$
(E) $\frac{A}{x-1} + \frac{Bx}{(x-1)^2} + \frac{C}{x-2} + \frac{Dx+E}{x^2+4}$

11. Determine the partial fraction decomposition of

$$\frac{7x^2+9}{x(x^2+3)}$$

Answer:_____

12. Determine the partial fraction decomposition of

$$\frac{4x - 11}{x^2 - 7x + 10}$$

Answer:_____

13. Evaluate
$$\int \frac{5x^2 + 9}{x^2(x+3)} dx$$

$$\int \frac{5x^2 + 9}{x^2(x+3)} \, dx = \underline{\qquad}$$

14. Evaluate
$$\int \frac{x^2 + 2}{x^3 + 3x^2 + 2x} dx$$

$$\int \frac{x^2 + 2}{x^3 + 3x^2 + 2x} \, dx = \underline{\qquad}$$

15. Evaluate
$$\int \frac{9x^2 - 4x + 5}{(x - 1)(x^2 + 1)} \, dx$$

$$\int \frac{x^2 + 2}{x^3 + 3x^2 + 2x} \, dx = \underline{\qquad}$$

16. Determine if the following integral is proper or improper.

$$\int_0^{\pi/2} \frac{\sin x}{1 - \cos x} \, dx$$

(A) It is improper because of a discontinuity at $x = \pi/6$

- (B) It is improper because of a discontinuity at $x = \pi/4$
- (C) It is improper because of a discontinuity at $x = \pi/3$
- (D) It is improper because of a discontinuity at x = 0
- (E) It is improper because of a discontinuity at $x = \pi/2$
- (F) It is proper since it is defined on the interval $[0, \pi/2]$.
- 17. Determine if the following integral is proper or improper.

$$\int_0^{\pi/2} \tan(x) \, dx$$

- (A) It is improper because of a discontinuity at $x = \pi/6$
- (B) It is improper because of a discontinuity at $x=\pi/4$
- (C) It is improper because of a discontinuity at $x = \pi/3$
- (D) It is improper because of a discontinuity at x = 0
- (E) It is improper because of a discontinuity at $x = \pi/2$
- (F) It is proper since it is defined on the interval $[0, \pi/2]$.
- 18. Determine if the following integral is proper or improper.

$$\int_0^{\pi/2} \cos(x) \, dx$$

- (A) It is improper because of a discontinuity at $x=\pi/6$
- (B) It is improper because of a discontinuity at $x = \pi/4$
- (C) It is improper because of a discontinuity at $x = \pi/3$
- (D) It is improper because of a discontinuity at x = 0
- (E) It is improper because of a discontinuity at $x = \pi/2$
- (F) It is proper since it is defined on the interval $[0, \pi/2]$.

19. Evaluate the following integral;

$$\int_{1}^{\infty} \frac{5}{\sqrt{x}} dx$$

 $\int_{1}^{\infty} \frac{3}{x^2} dx$

20. Evaluate the following integral;

21. Evaluate the following integral;

$$\int_{1}^{\infty} \frac{10}{x} dx$$

22. Evaluate the following integral;

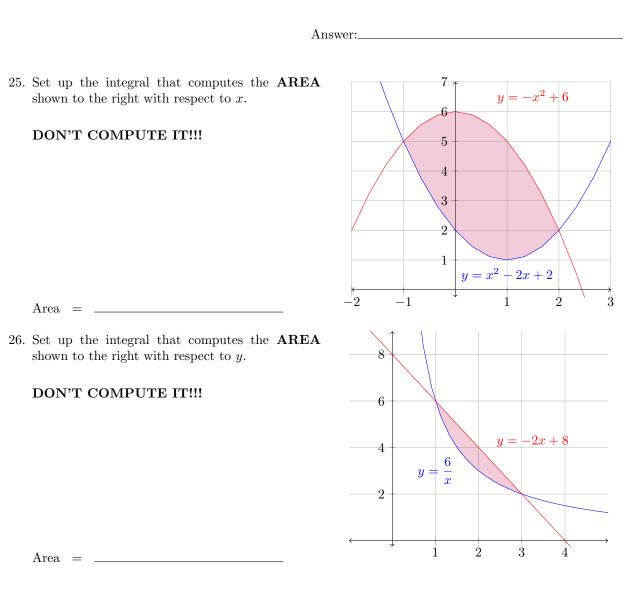
$$\int_0^\infty \frac{7}{e^{10x}} dx$$

$$\int_0^\infty \frac{7}{e^{10x}} dx = -$$

23. Evaluate the definite integral

$$\int_{2}^{\infty} \frac{dx}{5x+2}$$

24. The rate at which a factory is dumping pollution into a river at any time t is given by $P(t) = P_0 e^{-kt}$, where P_0 is the rate at which the pollution is initially released into the river. If $P_0 = 3000$ and k = 0.080, find the total amount of pollution that will be released into the river into the indefinite future.



27. Set up the integral that computes the **AREA** with respect to x of the region bounded by

$$y = \frac{2}{x}$$
 and $y = -x + 3$

Area = _____

28. Find the area of the region bounded by $y = 6x^2$ and y = 12x.

Area = ____

29. Find the area of the region bounded by $y = 6x - x^2$ and $y = 2x^2$.

Area =

30. Calculate the **AREA** of the region bounded by the following curves.

 $x = 100 - y^2$ and $x = 2y^2 - 8$

Area = ____

31. Calculate the **AREA** of the region bounded by the following curves.

 $y = x^3$ and $y = x^2$

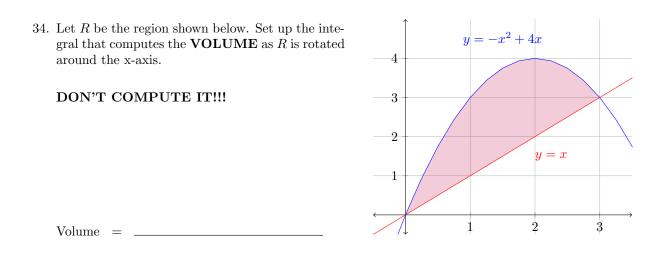
Area = _

32. After t hours studying, one student is working $Q_1(t) = 25 + 9t - t^2$ problems per hour, and a second student is working on $Q_2(t) = 5 - t + t^2$ problems per hour. How many more problems will the first student have done than the second student after 10 hours?

Answer:_____

33. The birthrate of a particular population is modeled by $B(t) = 1000e^{0.036t}$ people per year, and the death rate is modeled by $D(t) = 725e^{0.019t}$ people per year. How much will the population increase in the span of 10 years? ($0 \le t \le 20$) Round to the nearest whole number.

Answer:____



35. Set up the integral that computes the **VOLUME** of the region bounded by

$$y = \sqrt{16 - x}, y = 0$$
 and $x = 0$

about the y-axis

Volume = ____

36. Set up the integral that computes the **VOLUME** of the region bounded by

$$y = e^{-x}, y = 4 x = 0 \text{ and } x = 10$$

about the x-axis

Volume = _____

37. Find the volume of the solid that results by revolving the region enclosed by the curves $y = \frac{5}{x}$, y = 0, x = 5, and x = 7 about the x-axis.

Volume = ____

$$y = 7x$$
, $y = 21$ $x = 1$ and $x = 3$

around the x-axis

Volume = _____

39. Find the **VOLUME** of the region bounded by

y = 7x, y = 0 x = 1 and x = 3

around the x-axis

40. Set up the integral that computes the **VOLUME** of the region bounded by

 $y = x^2$, and $y = \sqrt{x}$

about the y-axis

Volume = _____

41. Set up the integral that computes the **VOLUME** of the region bounded by

 $y = x^2$, and $y^2 = x$

about the x-axis

 $y = x - x^2$, and y = 0

around the x-axis

Volume = _

43. Find the **VOLUME** of the solid generate by revolving the given region about the x-axis:

 $y = 8\sqrt{x}, \quad y = 0, \quad x = 3, \quad x = 6$

Volume = _____

$$y = 4x^2, \quad x = 0, \quad y = 4$$

around the y-axis.

Volume = _____

45. Set up the integral that computes the **VOLUME** of the region bounded by

y = x + 8, and $y = (x - 4)^2$

about the x-axis

Volume = _____

$$y = 10x, \quad x = 0, \quad y = 10$$

around the y-axis

Volume = _____

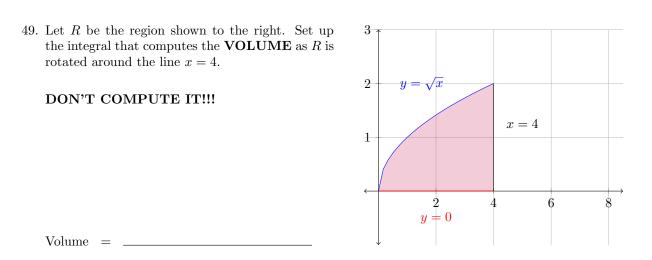
47. Find the **VOLUME** of the solid generated by rotating the region bounded by

 $y = x + 3, \quad x = 0, \quad y = 9$

around the y-axis

$$x + 3y = 9, \quad x = 0, \quad y = 0$$

around the y-axis



Volume = .

50. Set up the integral needed to find the volume of the solid obtained when the region bounded by

$$y = 2 - x^2$$
 and $y = x^2$

is rotated about the line y = 3.

Volume = _____

51. SET-UP using the disk/washer method. the VOLUME of the region bounded by

$$y = 3x, \quad x = 0, \quad y = 27$$

around the line y = 27

(A)
$$\pi \int_{0}^{27} (729 - 162x + 9x^2) dx$$

(B) $\pi \int_{0}^{27} 9x^2 dx$
(C) $\pi \int_{0}^{9} 9x^2 dx$
(D) $\pi \int_{0}^{9} (9x^2 - 162x) dx$
(E) $\pi \int_{0}^{27} (729 - 9x^2) dx$
(F) $\pi \int_{0}^{9} (729 - 162x + 9x^2) dx$

$$y = 3x^2, \quad x = 0, \quad y = 27$$

around the line y = 27

Volume = _____

53. **SET-UP using the Shell method**, the integral that computes the **VOLUME** of the region in quadrant I enclosed by the region defined by a triangle with vertices at (0,0), (0,5), and (4,0) about the y-axis.

(A)
$$\pi \int_{0}^{5} \left(8x - \frac{5}{4}x^{2}\right) dx$$

(B) $\pi \int_{0}^{5} \frac{5}{4}x^{2} dx$
(C) $\pi \int_{0}^{4} 4x^{2} dx$
(D) $\pi \int_{0}^{4} \left(8x - \frac{5}{4}x^{2}\right) dx$
(E) $\pi \int_{0}^{4} \left(10x - \frac{5}{2}x^{2}\right) dx$
(F) $\pi \int_{0}^{5} \left(10x - \frac{5}{2}x^{2}\right) dx$

54. Using the **Shell Method**, set up the integral that computes the **VOLUME** of the region bounded by

$$x = 2y - y^2$$
, and $x = 0$

about the x-axis.

Volume = _____

55. Using the Shell Method, set up the integral that computes the VOLUME of the region bounded by

 $y = 2 - x^2$, and $y = x^2$

about the y-axis.

56. Using the **Shell Method**, set up the integral that computes the **VOLUME** of the region bounded by

$$y = 3\sqrt{x}$$
, and $y = x$

about the x = 12.

Volume = _____

57. Using the **Shell Method**, set up the integral that computes the **VOLUME** of the region bounded by

y = x, and $y = x^2$

about the line x = -2.

58. Using the **Shell Method**, set up the integral that computes the **VOLUME** of the region bounded by

$$y = 7x^2, y = 0 \text{ and } x = 2$$

about the line x = 3.

Volume = _____

59. Using the Shell Method, set up the integral that computes the VOLUME of the region bounded by

 $x = y^2 + 1$, and x = 2

about the line y = -2.