Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. Given $f(x)=2 x^{5 / 2}-\cos (3 \pi x)$, evaluate $f^{\prime}(4)$.
 $f^{\prime}(x)=2 \cdot \frac{5}{2} x^{3 / 2}-[-\sin (3 \pi x)] \cdot(3 \pi)$ $=5 x^{3 / 2}+3 \pi \sin (3 \pi x)$ $f^{\prime}(4)=5(4)^{3 / 2}+3 \pi \underbrace{\sin (3 \pi \cdot 4)}_{0}=40$

$$
f^{\prime}(4)=
$$

2. Evaluate the definite integral

$=\frac{3}{2}-\pi$

$$
\int_{0}^{\pi / 6}(3 \cos (x)-6) d x=\square
$$

3. A faucet is turned on at 9:00 am and water starts to flow into a tank at the rate of

$$
r(t)=6 \sqrt{t}
$$

where t is time in hours after 9:00 am and the rate $r(t)$ is in cubic feet per hour.
(a) How much water, in cubic feet, flows into the tank from 10:00 am to 1:00 pm?

$$
\begin{aligned}
10.00 \mathrm{am} \Rightarrow 1 \mathrm{hr} \\
1.00 \mathrm{pm} \Rightarrow 4 \mathrm{hrs}
\end{aligned}\left\{\begin{array}{l}
46_{1}^{4 / 2 d t} \\
\\
\left.=6 \cdot \frac{2}{3}+^{3 / 2}\right]_{1}^{4} \\
\\
\left.=4 t^{3 / 2}\right]_{1}^{4} \\
\end{array}\right.
$$

(b) How many hours after 9:00 am will there be 121 cubic feet of water in the tank?

$$
\begin{array}{r}
\text { Solve } \begin{array}{r}
t{ }_{0} \sin ^{1 / 2}+121 \\
4+3 / 2
\end{array}+121 \\
+3 / 2=\frac{121}{4} \\
t=\left(\frac{121}{4}\right)^{2 / 3}
\end{array}
$$

4. Which derivative rule is undone by integration by substitution?
(A) Power Rule
(B) Quotient Rule
(C) Product Rule
(D) Chain Rule
(E) Constant Rule
(F) None of these
5. Which derivative rule is undone by integration by parts?
(A) Power Rule
(B) Quotient Rule
(C) Product Rule
(D) Chain Rule
(E) Constant Rule
(F) None of these
6. What would be the best substitution to make the solve the given integral?

7. What would be the best substitution to make the solve the given integral?

$$
\int \sec ^{2}(5 x) e^{\tan (5 x)} d x
$$

$$
\int \tan (5 x) \sec (5 x) e^{\sec (5 x)} d x
$$

9. Find the area under the curve $y=14 e^{7 x}$ for $0 \leq x \leq 4$.

10. Evaluate the definite integral.

$$
\begin{aligned}
& \int_{0}^{2}\left(5 e^{2 x}+8\right) d x \\
& \left.\left.\begin{array}{rl}
\underbrace{2}_{u-5 u b} 5 e^{2 x} d x
\end{array} \int_{0}^{2} s d x=\frac{5}{2} e^{2 x}\right]_{0}^{2}+8 x\right]_{0}^{2} \\
& =\frac{5}{2} e^{4}-\frac{5}{2}+16 \\
& =\frac{5}{2} e^{4}-\frac{27}{2}
\end{aligned}
$$

$$
\int_{0}^{2}\left(5 e^{2 x}+8\right) d x=\frac{5}{2} e^{4}+\frac{27}{2}
$$

11. Evaluate the indefinite integral
$\int 18 x \cos \left(x^{2}\right) d x$

$$
\begin{aligned}
& \frac{u=x^{2}}{d u=2 x} d x \\
& \frac{d u}{2 x}=d x
\end{aligned}
$$

$$
\begin{aligned}
\int 18 x \cos (u) \frac{d u}{d x} & =\int 9 \cos (u) d u \\
& =9 \sin (u)+c \\
& =9 \sin \left(x^{2}\right)+c
\end{aligned}
$$

$$
\int_{18 \cos (x) d x=}=9 \sin \left(x^{2}\right)+c
$$

$$
\begin{aligned}
\begin{array}{l}
\frac{u}{\frac{u}{d u}}=-x^{4} \\
\frac{d u}{-4 x^{3}}
\end{array}=d x
\end{aligned}
$$

$$
\int_{\operatorname{ge}^{3} e^{-x} d x=-\frac{9}{4} e^{-x^{4}}+c}
$$

13. After an oil spill, a company uses oil-eating bacteria to help clean up. It is estimated that t hours after being placed in the spill, the bacteria will eat the oil at a rate of

$$
L^{\prime}(t)=\sqrt{3 t+2} \quad \text { gallows per hour }
$$

How many gallons of oil will the bacteria eat in the first 4 hours? Round to 4 decimal places.

14. It is estimated that t-days into a semester, the average amount of sleep a college math student gets per day $S(t)$ changes at a rate of

$$
\frac{-4 t}{e^{t^{2}}}=-4+e^{-+2}
$$

hours per day. When the semester begins, math students sleep an average of 8.2 hours per day. What

$$
\begin{aligned}
& \text { is } S(t), 2 \text { days into the semester? } \\
& \text { (1) } \int-4 t e^{-t^{2}} d t \frac{u=-t^{2}}{d u=-2 t d t} \int-{ }_{-T}^{2} e^{u} \frac{d u}{-2 t} \\
& \frac{d u}{-2 t}=d t \\
& \begin{aligned}
=\int 2 e^{u} d u & =2 e^{u}+c \\
& =2 e^{-t^{2}}+c
\end{aligned}
\end{aligned}
$$

(2)

$$
\begin{gathered}
S(0)=8.2 \text { Find } c . \\
8.2=2 e^{0}+c \\
8.2=2+c \\
c=6.2
\end{gathered}
$$

(3)

$$
\begin{aligned}
s(t) & =2 e^{-t^{2}}+6.2 \\
s(2) & =2 e^{-4}+6.2 \\
& \approx 6.237
\end{aligned}
$$

15. A biologist determines that, t hours after a bacterial colony was established, the population of bacteria in the colony is changing at a rate given by

$$
P^{\prime}(t)=\frac{5 e^{t}}{1+e^{t}}
$$

million bacteria per hour, $0 \leq t \leq 5$.

If the bacterial colony started with a population of 1 million, how many bacteria, in millions are present in the colony after the 5 -hour experiment?
(1) \int

$$
\frac{5 e^{t}}{1+e^{T}}
$$

$$
\begin{aligned}
& \begin{array}{l}
\int \frac{5 x}{4} \\
+C
\end{array} \\
& =5 \ln \left|1+e^{+}\right|+c
\end{aligned}
$$

(2) $P(0)=1$ Find C.

$$
\begin{aligned}
& 1=5 \ln \left|1+e^{0}\right|+C \\
& 1=5 \ln |1+1|+c \\
& 1=5 \ln 2+C
\end{aligned}
$$

$$
1-5 \ln 2=c
$$

(3) $P(t)=5 \ln \left|1+e^{t}\right|+1-5 \ln 2$
$P(5)=5 \ln \left|1+e^{5}\right|+1-5 \ln 2$ ≈ 22.57
22.57
16. Evaluate the indefinite integral

$$
\begin{aligned}
& \begin{array}{l}
\frac{u}{d u}=x^{2}+4 \\
d u
\end{array} \int x x^{3} \frac{d u}{2 x}=\frac{1}{2} \int u^{3} d u=\frac{1}{2} \cdot \frac{u^{4}}{4}+c \\
& \frac{d u}{2 x}=d x \quad
\end{aligned}
$$

$$
\int_{x\left(x^{2}+4\right)^{3} d x=\frac{1}{8}\left(x^{2}+4\right)^{4}+c}
$$

17. Evaluate the definite integral.

$$
\begin{aligned}
& \frac{u}{\frac{u}{d u}=2 x} \\
& \begin{aligned}
\frac{d u}{2}=d x
\end{aligned} \int 3 \sin (u) \frac{d u}{2}=\frac{3}{2} \int \sin (u) d u=-\frac{3}{2} \cos (u) \\
&\left.=-\frac{3}{2} \cos (2 x)\right]_{0}^{\pi / 4} \\
&=\frac{-3}{2} \cos \left(\frac{2 \pi}{4}\right)^{0}-\left(-\frac{3}{2} \cos (4)\right) \\
&=3 / 2
\end{aligned}
$$

$10^{174} 3 \sin (2 \pi) d x=\frac{7}{3 / 2}$
18. Evaluate the indefinite integral.

$$
\begin{aligned}
& \frac{u=x^{2}+8 x}{d u=(2 x+2) d x} \\
& d u=2(x+4) d x \\
& \frac{d u}{2(x+4)}=d x
\end{aligned}
$$

$$
\frac{u=x^{2}+8 x}{d u=(2 x+8) d x} \int(x+4) \sqrt{u} \frac{d u}{2(x+4)}
$$

$$
=\frac{1}{2} \int u^{1 / 2} d u
$$

$$
=\frac{1}{x} \cdot \frac{x}{3} u^{3 / 2}+c
$$

$$
=\frac{1}{3}\left(x^{2}+8 x\right)^{3 / 2}+C
$$

$$
\int(x+4) \sqrt{x^{2}+8 x} d x=\frac{1}{3}\left(x^{2}+8 x\right)^{3 / 2}+C
$$

19. Evaluate the definite integral.

$$
\begin{aligned}
& u=\sqrt{x}+1 \\
& u=x^{1 / 2}+1 \\
& d u=\frac{1}{2} x^{-1 / 2}
\end{aligned} d x=\begin{aligned}
& d u=\frac{1}{2} \cdot \frac{1}{\sqrt{x}} d x \\
& 2 \sqrt{x} d u=d x
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{2 \sqrt{x} \mid \sqrt{0}}{\int_{0}^{0} \cdot \frac{d x}{2 \sqrt{x}(\sqrt{x}+1)}} & =\int^{\frac{d}{u}} \frac{d u}{u}=\ln |u| \\
& =\ln |\sqrt{\pi}+1|]_{0}^{9} \\
& =\ln |\sqrt{\pi}+1|-\ln |\sqrt{0}+1| \\
& =\ln (4)
\end{aligned}
$$

$$
\int_{0}^{0} \frac{d x}{\sqrt{x(\sqrt{x}+1)}}=\ln (4)
$$

20. A tree is transplanted and after t years is growing at a rate

$$
r^{\prime}(t)=1+\frac{1}{(t+1)^{2}} \quad \text { meters per year. }
$$

After 2 years it has reached a height of 5 meters. How tall was the tree when it was originally transplanted? Round to one decimal place.

$$
\begin{aligned}
r(0) & =0-1+\frac{10}{3} \\
& =7 / 3 \approx 2.3
\end{aligned}
$$

21. The marginal revenue from the sale of x units of a particular product is estimated to be $R^{\prime}(x)=$ $50+350 x e^{-x^{2}}$ dollars per unit, and where $R(x)$ is revenue in dollars. What revenue should be expected from the sale of 100 units? Assume that $R(0)=0$.

$$
\begin{aligned}
R(x) & =\int 50+350 x e^{-x^{2}} d x \\
& =\int 50 d x+\underbrace{}_{\substack{u=-x^{2} \\
\int 350 x e^{-x^{2}} d x \\
d u=-2 x d x \\
\frac{d u}{-2 x}=d x}}=\int 50 d x+\int 350 x e^{u} \frac{d u}{-2 / 4} \\
& =\int 50 d x-175 \int e^{u} d u \\
& =50 x-175 e^{u}+c \\
& =50 x-175 e^{-x^{2}}+c
\end{aligned}
$$

$R(0)=0$
$0=0-175+c$

$$
c=175
$$

$R(x)=50 x-175 e^{-x^{2}}+175$

$$
R(100) \approx 5175
$$

$$
R(100)=\square
$$

22. Evaluate the indefinite integral

$$
\int \frac{\ln (7 x)}{x} d x
$$

$$
\frac{u=\ln (7 x)}{d u=\frac{1}{7 x} \cdot 7 d x} \int u d u=\frac{u^{2}}{2}=\frac{(\ln (7 x))^{2}}{2}+C
$$

$$
d u=\frac{1}{x} d x
$$

$$
\int \frac{\ln (7 x)}{x} d x=\frac{(\ln (7 x))^{2}}{2}+<
$$

23. Evaluate

Rewrite $\int_{1}^{e} \frac{4 \ln x}{x} d x \frac{u=\ln x}{d u=\frac{1}{x}} d x \int_{1}^{e} \frac{\ln \left(x^{4}\right)}{x} d x$

$$
\begin{aligned}
& =\underbrace{2(\ln e)^{2}}_{2}-\underbrace{2(\ln 1)^{2}}_{0} \\
& =2
\end{aligned}
$$

$$
\int_{1}^{e} \frac{\ln \left(x^{4}\right)}{x} d x=\quad 2
$$

24. Evaluate the definite integral.

$$
\begin{aligned}
& \left.\frac{u=x-1}{d u=d x} \frac{d v=\sin (x) d x}{v=-\cos (x)} u v-\int v d u=-(x-1) \cos x\right]_{0}^{\pi / 2}-\int_{0}^{\pi / 2}(x-1) \sin (x) d x \quad(-\cos x) d x \\
& \left.=-(x-1) \cos x]_{0}^{\pi / 2}+\sin (x)\right]_{0}^{\pi / 2} \\
& =-\left(\frac{\pi}{2}-1\right) \cos \left(\frac{\pi}{2}\right)-[-(0-1) \cos (0)] \\
& +\sin \left(\frac{\pi}{2}\right)-\sin t 0>^{\circ} \\
& =-1+1=0
\end{aligned}
$$

$$
\int_{0}^{\pi / 2}(x-1) \sin (x) d x=0
$$

25. Evaluate

Rewrite $\int 3 x(7 \ln (x)) d x=\int 21 x \ln x d x$

$$
\begin{aligned}
& \frac{u=21 \ln (x)}{d u=\frac{21}{x} d x} \frac{d v=x d x}{v=\frac{x^{2}}{2}} u v-\int v d u \\
& =\frac{21 x^{2} \ln x}{2}-\int \frac{x^{2}}{2} \cdot \frac{21}{x} d x \\
& =\frac{21 x^{2} \ln x}{2}-\int \frac{21}{2} x d x \\
& =\frac{21 x^{2} \ln x}{2}-\frac{21}{2} \cdot \frac{x^{2}}{2}+C \\
& =\frac{21 x^{2} \ln x}{2}-\frac{21 x^{2}}{4}+C \quad \frac{21 x^{2} \ln x}{2}-\frac{21 x^{2}}{4}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { 26. Evaluate } \\
& \int x^{3} \ln (2 x) d x \\
& \frac{u=\ln (2 x)}{d u=\frac{1}{2 x} \cdot 2 d x} \frac{d v=x^{3} d x}{v=\frac{x^{4}}{4}} u v-\int v d u=\frac{x^{4} \ln (2 x)}{4}-\int \frac{x^{4}}{4} \cdot \frac{1}{x} d x \\
& d u=\frac{1}{x} d x \\
& =\frac{x^{4} \ln (2 x)}{4}-\frac{1}{4} \int x^{3} d x \\
& =\frac{x^{4} \ln (2 x)}{4}-\frac{1}{4} \cdot \frac{x^{4}}{4}+c \\
& \int_{x^{2} \ln (2 x) d x}=\frac{x^{4}}{4} \ln (2 x)-\frac{x^{4}}{16}+C \\
& \text { 27. Evaluate the definite integral. } \\
& \frac{u=5 x}{d u=5 d x} \frac{d v=e^{3 x} d x}{v=\frac{1}{3} e^{3 x}} u v-\int v d u \\
& =\frac{5 x}{3} e^{3 x}-\int \frac{5}{3} e^{3 x} d x \\
& \left.=\left(\frac{5 x}{3} e^{3 x}-\frac{5}{3} \cdot \frac{e^{3 x}}{3}\right)\right]_{0}^{3} \\
& =\frac{15}{3} e^{9}-\frac{5}{9} e^{9}-\left[0-\frac{5}{9}\right] \\
& =\frac{40}{9} e^{9}+\frac{5}{9} \\
& \int_{0}^{3} \sec ^{2 x+c} d x=\frac{40}{9} e^{9}+\frac{5}{9}
\end{aligned}
$$

28. The population of pink elephants in Dumbo's dreams, in hundreds, t years after the year 1980 is given by

$$
P(t)=\frac{e^{5 t}}{1+e^{5 t}}
$$

What is the average population during the decade between 1980 and 2000?

$$
\text { i.e. } \begin{aligned}
& \frac{1}{2000-1980} \int_{0}^{20} \frac{e^{5 t}}{1+e^{5 t}} d t \frac{u}{d u}=1+e^{5 t} \\
& \frac{d u}{5 e^{5 t}}=\frac{1}{20} \int^{\frac{d t}{d t}} \frac{e^{5 t}}{u} \cdot \frac{d u}{5 e^{5 t}} \\
&=\frac{1}{100} \int_{0}^{\frac{d u}{u}}
\end{aligned}
$$

29. Evaluate the indefinite integral.

$$
\begin{aligned}
& \int 20 \sin (2 x) d x \\
& \frac{u=20 x}{d u=20 d x} \frac{d v=\sin (2 x) d x}{v=-\frac{\cos (2 x)}{2}} u v-\int v d u \\
& =-\frac{20}{2} x \cos (2 x)+\int \frac{20}{2}(1 \cos (2 x)) d x \\
& =-10 x \cos (2 x)+10 \int \cos (2 x) d x \\
& =-10 x \cos (2 x)+10 \frac{\sin (2 x)}{2}+C \\
& \int 20 x \sin (2 x) d x=
\end{aligned}
$$

30. The velocity of a cyclist during an hour-long race is given by the function

$$
v(t)=166 t e^{-2.2 t} \mathrm{mi} / \mathrm{hr}, \quad 0 \leq t \leq 1
$$

Assuming the cyclist starts from rest, what is the distance in miles he traveled during the first hour of the race?

$=\frac{166 t e^{-2.2 t}}{-2.2}+\int \frac{e^{-2.2 t}}{t 2.2} \cdot 166 d t$

$$
\begin{aligned}
& =-\frac{166+e^{-2.2 t}}{2.2}+\frac{166}{2.2} \cdot e^{-2.2 t}-c \\
& =\frac{-166+e^{-2.2 t}}{2.2}-\frac{166 e^{-2.2 t}}{(2.2)^{2}}+C
\end{aligned}
$$

(2) $s(0)=0$. Find C.

$$
0=0-\frac{166}{(2.2)^{2}}+c \rightarrow c=\frac{166}{(7.2)^{2}}
$$

(3) $s(t)=\frac{-166+e^{-2.2 t}}{2.2}-\frac{166 e^{-2.2 t}}{(2.2)^{2}}+\frac{166}{(3.2)^{2}}$

$$
s(1)=-\frac{166}{22} e^{-2.2}-\frac{166}{(2.2)^{2}} e^{-2.2}+\frac{166}{(2.2)^{2}}
$$ ≈ 22.137

Answer:
31. After t days, the growth of a plant is measured by the function $2000 t e^{-20 t}$ inches per day. What is the change in the height of the plant (in inches) after the first 14 days?
$\int_{0}^{14} 2000 t e^{-20 t} d t$

$$
\begin{aligned}
& \frac{u=2000 t}{d u=2000 d t} \frac{d v=e^{-20 t} d t}{v=\frac{e^{-20 t}}{-20}} u v-\int v d u \\
& =2000 t\left(\frac{e^{-20 t}}{-20}\right)+\int\left(\frac{e^{-20 t}}{+20}\right) 2000 d t \\
& =-100+e^{-20 t}+100 \int e^{-20 t} d t \\
& =-100+e^{-20 t}+100\left(\frac{e^{-20 t}}{-20}\right) \\
& \left.=\left(-100+e^{-20 t}-5 e^{-20 t}\right)\right]_{0}^{14} \\
& =5
\end{aligned}
$$

$u-5=2+$
 $\frac{u=2 t+5}{d u=2 d t}$ $\frac{d u}{2}=d t$

$$
\begin{aligned}
\int 4+u^{1 / 2} \frac{d u}{2} & =\int 2+u^{1 / 2} d u=\int(u-5) u^{1 / 2} d u \\
& =\int u^{3 / 2}-5 u^{1 / 2} d u \\
& =\frac{2}{5} u^{5 / 2}-5 \cdot \frac{2}{3} u^{3 / 2}+C \\
& =\frac{2}{5}(2++5)^{5 / 2}-\frac{10}{3}(2++5)^{3 / 2}+C
\end{aligned}
$$

33. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$
f(x)=\frac{3 x+1}{x^{2}(x+1)^{2}\left(x^{2}+1\right)}
$$

(A) $\frac{A}{x^{2}}+\frac{B}{(x+1)^{2}}+\frac{C}{x^{2}+1}$
(B) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}+\frac{D}{(x+1)^{2}}+\frac{E}{x^{2}+1}$
(C) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}+\frac{D}{(x+1)^{2}}+\frac{E x+F}{x^{2}+1}$
(D) $\frac{A}{x}+\frac{B x+C}{x^{2}}+\frac{D}{x+1}+\frac{E x+F}{(x+1)^{2}}+\frac{G x+H}{x^{2}+1}$
(E) $\frac{A}{x}+\frac{B}{(x+1)^{2}}+\frac{C}{x^{2}+1}$
34. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$
f(x)=\frac{7 x-5}{x^{2}\left(x^{2}+9\right)}
$$

(A) $\frac{A}{x}+\frac{B}{x}+\frac{C x+D}{x^{2}+9}$
(B) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+9}$
(C) $\frac{A}{x}+\frac{B x+C}{x^{2}}+\frac{D x+E}{x^{2}+9}$
(D) $\frac{A x+B}{x^{2}}+\frac{C x+D}{x^{2}+9}$
(E) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+3}+\frac{D}{x-3}$
(F) $\frac{A x+B}{x^{2}}+\frac{C}{x+3}+\frac{D}{x-3}$
35. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$
f(x)=\frac{x^{2}+2 x+3}{(x-1)^{2}(x-2)\left(x^{2}+4\right)}
$$

(A) $\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x-2}+\frac{D x+1}{x^{2}+4}$
(B) $\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x-2}+\frac{D}{x^{2}+4}$
(C) $\frac{A}{x-1}+\frac{B x+C}{(x-1)^{2}}+\frac{D}{x-2}+\frac{E}{x^{2}+4}$
(D) $\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x-2}+\frac{D x}{x^{2}+4}$
(E) $\frac{A}{x-1}+\frac{B x}{(x-1)^{2}}+\frac{C}{x-2}+\frac{D x+E}{x^{2}+4}$
36. Determine the partial fraction decomposition of

$$
\begin{aligned}
\frac{A}{x}+\frac{B x+C}{x^{2}+3} & =\frac{A\left(x^{2}+3\right)+x(B x+C)}{x\left(x^{2}+3\right)} \\
& =\frac{A x^{2}+3 A+B x^{2}+C x}{x\left(x^{2}+3\right)} \\
& =\frac{(A+B) x^{2}+C x+3 A}{x\left(x^{2}+3\right)}
\end{aligned}
$$

$$
(A+B) x^{2}+C x+3 A=7 x^{2}+0 x+9
$$

$$
\left\{\begin{array}{l}
A+B=7 \\
C=0 \\
3 A=9 \rightarrow A=3
\end{array}\right.
$$

$$
\text { So } B=4
$$

37. Determine the partial fraction decomposition of

$$
\frac{4 x-11}{x^{2}-7 x+10}
$$

Factor $x^{2}-7 x+10=(x-2)(x-5)$

$$
\begin{aligned}
\frac{4 x-11}{(x-2)(x-5)} & =\frac{A}{x-2}+\frac{B}{x-5} \\
& =\frac{A(x-5)+B(x-2)}{(x-2)(x-5)} \\
& =\frac{(A+B) x+(-5 A-2 B)}{(x-2)(x-5)}
\end{aligned}
$$

So $4 x-11=(A+B) x+(-5 A-2 B)$

$$
\left\{\begin{array}{c}
4=A+B \\
-11=-5 A-2 B
\end{array}\right.
$$

Multiply \cup by 5 and add $(1)+(i)$.

$$
\begin{aligned}
& 26=5 A+5 B \\
&+11=-\rho A-2 B \\
& 9=3 B \\
& B=3 \\
& \text { Plug } B=3 \text { into } 0 \\
& 4=A+B \\
& 4=A+3 \\
& A=1
\end{aligned}>\frac{1}{x-2}+\frac{3}{x-5}
$$

38. Evaluate $\int \frac{5 x^{2}+9}{x^{2}(x+3)} d x$

$$
\begin{aligned}
& \frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+3}=\frac{A x(x+3)+B(x+3)+C x^{2}}{x^{2}(x+3)} \\
& =\frac{A x^{2}+3 A x+B x+3 B+C x^{2}}{x^{2}(x+3)} \\
& =\frac{(A+C) x^{2}+(3 A+B) x+3 B}{x^{2}(x+3)} \\
& (A+C) x^{2}+(3 A+B) x+3 B=5 x^{2}+0 x+9 \\
& \left\{\begin{aligned}
A+C & =5 \\
3 A+B & =0 \\
3 B & =9 \rightarrow B=3
\end{aligned}\right. \\
& 3 A+B=0 \quad A+C=5 \\
& 3 A+3=0 \quad-1+C=5 \\
& 3 A=-3 \\
& A=-1 \\
& \int-\frac{1}{x} d x+\int \frac{3}{x^{2}} d x+\int \frac{6}{x+3} d x=-\ln |x|-\frac{3}{x}+6 \ln |x+3|+c \\
& \int \frac{5 x^{2}+9}{x^{2}(x+3)}+\ln |x|-\frac{3}{x}+6 \ln |X+3|+C
\end{aligned}
$$

39. Evaluate \square
Factor $x^{3}+3 x^{2}+2 x=x\left(x^{2}+3 x+2\right)=x(x+1)(x+2)$
So

$$
\begin{aligned}
\frac{A}{x}+\frac{B}{x+1}+\frac{C}{x+2} & =\frac{A(x+1)(x+2)+B x(x+2)+C x(x+1)}{x(x+1)(x+2)} \\
& =\frac{A\left(x^{2}+3 x+2\right)+B\left(x^{2}+2 x\right)+C\left(x^{2}+x\right)}{x(x+1)(x+2)} \\
& =\frac{(A+B+C) x^{2}+(3 A+2 B+C) x+2 A}{x(x+1)(x+2)}
\end{aligned}
$$

So $x^{2}+2=(A+B+C) x^{2}+(3 A+2 B+C) x+2 A$

$$
1 \cdot x^{2}+0 x+2=(A+B+C) x^{2}+(3 A+2 B+C) x+2 A
$$

$$
\left\{\begin{array}{l}
1=A+B+C \\
0=3 A+2 B+C \\
2=2 A
\end{array}\right.
$$

Solve (iii).

$$
2=2 A
$$

$$
A=1
$$

Plug $A=1$ into $(i$ and (i).

$$
\left\{\begin{array}{l}
1=1+B+C \\
0=3+2 B+C
\end{array}\right.
$$

Subtract the eqns.

$$
\begin{aligned}
& 1=1+B+\gamma \\
& -\frac{(0=3+2 B+C)}{1=-2-B} \\
& +2+2 \\
& \hline 3=-B \\
& B=-3
\end{aligned}
$$

Plug

$$
\begin{gathered}
B=-3 \text { int } 00 . \\
1=1+B+C \\
1=1-3+C \\
1=-2+C \\
3=C
\end{gathered}
$$

Plug $A=1, B=-3, C=3$ into
decomposition.

$$
\frac{1}{x}+\frac{-3}{x+1}+\frac{3}{x+2}
$$

40. Evaluate $\int \frac{9 x^{2}-4 x+5}{(x-1)\left(x^{2}+1\right)} d x$

$B x$	C	
x	$B x^{2}$	$C x$
-1	$-B x$	$-C$

$$
\text { So } \begin{aligned}
\frac{A}{x-1}+\frac{B x+C}{x^{2}+1} & =\frac{A\left(x^{2}+1\right)+(B x+C)(x-1)}{(x-1)\left(x^{2}+1\right)} \\
& =\frac{A x^{2}+A+B x^{2}-B x+C x-C}{(x-1)\left(x^{2}+1\right)} \\
& =\frac{(A+B) x^{2}+(C-B) x+(A-C)}{(x-1)\left(x^{2}+1\right)}
\end{aligned}
$$

So $\left\{\begin{array}{l}A+B=9 \\ C-B=-4 \\ A-C=5\end{array}\right.$

$$
\operatorname{So} \frac{5}{x-1}+\frac{4 x}{x^{2}+1}
$$

A ld © and (ii

$$
\begin{aligned}
& A+B=9 \\
&+\quad-B+C=-4 \\
& \hline A+C=5
\end{aligned}
$$

Add (iii) and (iv)

$$
\begin{gathered}
A-C=5 \\
+A+C=5 \\
\hline 2 A=10 \\
A=5
\end{gathered}
$$

$$
\begin{aligned}
& \int \frac{5}{x-1} d x+\underbrace{\int \frac{4 x}{x^{2}+1} d x}_{\frac{u=x^{2}+1}{d u=2 x d x}} \\
& =5 \ln |x-1|+2 \ln \left|x^{2}+1\right|+C
\end{aligned}
$$

Plug

$$
A=5 \text { into (i) }
$$

$$
\begin{aligned}
A+B & =9 \\
5+B & =4 \\
B & =4
\end{aligned}
$$

Plug $A>5$ into (iii)

$$
\begin{aligned}
A-C & =5 \\
5-C & =5 \\
C & =0
\end{aligned}
$$

$$
\int_{25} \frac{x^{2}+2}{x^{3}+3 x^{2}+2 x} d x=\frac{5 \ln |x-1|}{+2 \ln \left|x^{2}+\right|+C}
$$

41. Determine if the following integral is proper or improper.

$$
\int_{0}^{\pi / 2} \frac{\sin x}{1-\cos x} d x
$$

(A) It is improper because of a discontinuity at $x=\pi / 6$
(B) It is improper because of a discontinuity at $x=\pi / 4$
(C) It is improper because of a discontinuity at $x=\pi / 3$
(D) It is improper because of a discontinuity at $x=0$
(E) It is improper because of a discontinuity at $x=\pi / 2$
(F) It is proper since it is defined on the interval $[0, \pi / 2]$.
42. Determine if the following integral is proper or improper.

$$
\int_{0}^{\pi / 2} \tan (x) d x
$$

$$
\tan x=\sin x
$$

(A) It is improper because of a discontinuity at $x=\pi / 6$
(B) It is improper because of a discontinuity at $x=\pi / 4$
(C) It is improper because of a discontinuity at $x=\pi / 3$
(D) It is improper because of a discontinuity at $x=0$
(E) It is improper because of a discontinuity at $x=\pi / 2$
(F) It is proper since it is defined on the interval $[0, \pi / 2]$.

43. Determine if the following integral is proper or improper.
(A) It is improper because of a discontinuity at $x=\pi / 6$
(B) It is improper because of a discontinuity at $x=\pi / 4$
(C) It is improper because of a discontinuity at $x=\pi / 3$
(D) It is improper because of a discontinuity at $x=0$
(E) It is improper because of a discontinuity at $x=\pi / 2$
(F) It is proper since it is defined on the interval $[0, \pi / 2]$.
44. Evaluate the following integral;

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{5}{\sqrt{x}} d x=\left.\lim _{N \rightarrow \infty} \int_{1}^{N} 5 x^{\int_{1}^{\infty} \frac{5}{\sqrt{x}} d x} d x=\lim _{N \rightarrow \infty}\left(5 \cdot 2 x^{1 / 2}\right)\right]_{1}^{N} \\
&=\lim _{N \rightarrow \infty}\left(10(N)^{1 / 2}-10\right)=\infty \\
& \quad \int_{1}^{\infty} \frac{5}{\sqrt{x}} d x
\end{aligned}
$$

45. Evaluate the following integral;

$$
\begin{array}{r}
\int_{1}^{\infty} \frac{3}{x^{2}} d x=\lim _{N \rightarrow \infty} \int_{1}^{N} 3 x^{-2} d x=\lim _{N \rightarrow \infty}\left(\frac{3 x^{-1}}{-1}\right]_{1}^{N} \\
\left.=\lim _{N \rightarrow \infty}\left(-\frac{3}{x}\right)\right]_{1}^{N}=\lim _{N \rightarrow \infty}\left(-\frac{3}{x}+\frac{3}{1}\right) \\
\left.y=\frac{1}{x}\right) \\
\int_{1}^{\infty} \longrightarrow 3
\end{array}
$$

46. Evaluate the following integral;

$$
\begin{aligned}
S_{1}^{\infty} \frac{16}{x} d x & \left.=\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{10}{x} d x=\lim _{N \rightarrow \infty}(16 \ln |x|)\right]_{1}^{N} \\
& =\lim _{N \rightarrow \infty}(10 \ln |N|-0)
\end{aligned}
$$

$$
\int_{i} \int_{10}^{x_{10} x_{x}}=\infty
$$

47. Evaluate the following integral;

$$
\begin{aligned}
&=\lim _{N \rightarrow \infty}\left(N e_{0}^{-x / 6} l x\right.\left.\left.=\lim _{N \rightarrow \infty}^{\int_{0}^{\infty}\left(-6 e^{-x / 6}\right)}\right)\right]_{0}^{N} \\
&=\lim _{N \rightarrow \infty}\left(-6 e^{-N / 6}+6\right)=6 \\
& \frac{T=e^{-x / 6}}{} \quad \int_{0}^{\infty}\left(e^{-3 / 6} d x=\frac{6}{}\right.
\end{aligned}
$$

48. Evaluate the following integral;

$$
\begin{aligned}
\int_{0}^{\infty} 7 e^{-10 x} d x=\lim _{N \rightarrow \infty} \int_{0}^{N} 7 e^{-10 x} d x & \left.=\lim _{N \rightarrow \infty}\left(7 \frac{e^{-10 x}}{-10}\right)\right]_{0}^{\infty} \\
& =\lim _{N \rightarrow \infty}\left(\frac{7 e^{-10 N}}{-10}+\frac{7}{10}\right)=0+\frac{7}{10} \\
\sim & \int_{0}^{-10 x} \frac{7}{e^{10 x} d x} \\
& \int_{0}^{\infty}=7 / 10
\end{aligned}
$$

49. Evaluate the definite integral

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \int_{2}^{N} \frac{d x}{5 x+2} \frac{d x}{5 x+2} \\
& \begin{array}{l}
\frac{u}{d u}=5 x+2 \\
\frac{d u}{5}=d x
\end{array} \lim _{N \rightarrow \infty} \int \frac{1}{5} \frac{1}{u} d u\left.=\lim _{N \rightarrow \infty} \frac{1}{5} \ln |u|=\lim _{N \rightarrow \infty} \frac{1}{5} \ln |5 x+2|\right]_{2}^{N} \\
&=\lim _{N \rightarrow \infty}\left(\left.\frac{1}{5} \ln |5 N+2|-\frac{1}{5} \ln | | 2 \right\rvert\,\right)=\infty
\end{aligned}
$$

$$
\int_{2}^{\infty} \frac{d x}{5 x+2}=
$$

\qquad
50. The rate at which a factory is dumping pollution into a river at any time t is given by $P(t)=P_{0} e^{-k t}$, where P_{0} is the rate at which the pollution is initially released into the river. If $P_{0}=3000$ and $k=0.080$, find the total amount of pollution that will be released into the river into the indefinite

$$
\begin{aligned}
\int_{0}^{\infty} P(t) d t & =\int_{0}^{\infty} 3000 e^{-0.080 t} d t=\lim _{N \rightarrow \infty} \int_{0}^{N} 3000 e^{-0.080 t} d t \\
& \left.=\lim _{N \rightarrow \infty} \frac{3000}{-0.030} e^{-0.08 N t}\right]_{0}^{N} \\
& =\lim _{N \rightarrow \infty}\left(-37500 e^{-0.080 N}+37500\right)=\frac{37500}{\downarrow}
\end{aligned}
$$

Answer:
51. Set up the integral that computes the AREA shown to the right with respect to x.

DON'T COMPUTE IT!!!

52. Set up the integral that computes the AREA shown to the right with respect to y. DON'T COMPUTE IT!!!

53. Set up the integral that computes the AREA with respect to x f the region bounded by

Bounds:

$$
y=\frac{2}{x} \quad \text { and } \quad y=-x+3
$$

$$
\begin{gathered}
\frac{2}{x}=-x+3 \\
2=-x^{2}+3 x \\
x^{2}-3 x+2=0 \\
(x-1)(x-2)=0 \\
x=1,2
\end{gathered}
$$

Test Pt. $x=1.5$

$$
y=-x+3 \Rightarrow y=-1.5+3=1.5 \rightarrow \operatorname{Top}
$$

$$
\int_{\text {Area }}^{2}\left(-x+3-\frac{2}{x}\right) d x
$$

Bound ${ }^{54}$ Find th

$$
\begin{aligned}
& \text { Bound s } \\
& 6 x-x^{2}=2 x^{2} \\
& 6 x-3 x^{2}=0 \\
& 3 x(2-x)=0 \\
& x=0,2
\end{aligned}
$$

Lest pt: $x=1$

$$
\begin{aligned}
& y=6 x-x^{2} \\
& y=y=5-\text { Top } \\
& y=2 x^{2} \quad \Rightarrow y=2 \rightarrow \text { Bottom }
\end{aligned}
$$

$$
\begin{aligned}
A & \left.=\int_{0}^{2 n} d\left(6 x-x^{3}\right)-2 x^{2}\right] d x \\
& =\int_{0}^{2}\left(6 x-3 x^{2}\right) d x \\
& \left.=\left(3 x^{2}-x^{3}\right)\right]_{0}^{2}=4
\end{aligned}
$$

4
55. Find the area of the region bounded by $y=2 x-x^{2}$ and $y=x^{2}$

Bolends:

$$
\begin{array}{ll}
\frac{\text { ind: }}{2 x-x^{2}=x^{2}} & A=\int_{0}^{1}\left(2 x-x^{2}\right)-x^{2} d x \\
2 x-2 x^{2}=0 & =\int_{0}^{1} 2 x-2 x^{2} d x \\
2 x(x-1)=0 & \left.=\left(\frac{2 x^{2}}{2}-\frac{2 x^{3}}{3}\right)\right]_{0}^{1}=\frac{1}{3}
\end{array}
$$

Test Pt: $x=1 / 2$

$$
\begin{aligned}
& \text { Test pt } x=1 / 2 \\
& y=2 x-x^{2} \rightarrow y\left(\frac{1}{2}\right)=3 / 4 \rightarrow \text { Top } \\
& y=x^{2} \rightarrow y\left(\frac{1}{2}\right)=1 / 4 \rightarrow \text { Bottom } \quad 1 / 3
\end{aligned}
$$

56. Calculate the AREA of the region bounded by the following curves.

Bounds:

$$
\begin{aligned}
100-y^{2} & =2 y^{2}-8 \\
108 & =3 y^{2} \\
36 & =y^{2} \\
y & = \pm 6
\end{aligned}
$$

Test Pf: $y=0$

$$
\begin{aligned}
A & =\int_{-6}^{6}\left(100-y^{2}\right)-\left(2 y^{2}-8\right) d y \\
& =\int_{-6}^{6}\left(108-3 y^{2}\right) d y \\
& \left.=\left(108 y-y^{3}\right)\right]_{-6}^{6} \\
& =864
\end{aligned}
$$

$$
x=100-y^{2} \rightarrow x=0 \rightarrow \text { Right }
$$

$$
\begin{aligned}
& x=100-y \rightarrow x=-8 \rightarrow \text { LD } \\
& x=2 y^{2}-8 \rightarrow x+
\end{aligned}
$$

57. Calculate the AREA of the region bounded by the following curves.

$$
y=x^{3} \quad \text { and } \quad y=x^{2}
$$

Bounds:

$$
\begin{aligned}
& x^{3}=x^{2} \\
& x^{3}-x^{2}=0 \\
& x^{2}(x-1)=0 \\
& x \geq 0,1 \\
& \text { Test Pt. } x=\frac{1}{2} \\
& y= x^{3} \rightarrow y=\frac{1}{8} \rightarrow \text { Bottom } \\
& y= x^{2} \rightarrow y=\frac{1}{4} \rightarrow \text { Top }
\end{aligned}
$$

$$
\begin{aligned}
A & =\int_{0}^{1}\left(x^{2}-x^{3}\right) d x \\
& \left.=\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)\right]_{0}^{1} \\
& =\frac{1}{3}-\frac{1}{4}=\frac{1}{12}
\end{aligned}
$$

$$
\text { Area }=
$$

58. After t hours studying, one student is working $Q_{1}(t)=25+9 t-t^{2}$ problems per hour, and a second student is working on $Q_{2}(t)=5-t+t^{2}$ problems per hour. How many more problems will the first student have done than the second student after 10 hours?

59. The birthrate of a particular population is modeled by $B(t)=1000 e^{0.036 t}$ people per year, and the death rate is modeled by $D(t)=725 e^{0.019 t}$ people per year. How much will the population increase in

$$
\begin{gathered}
\int_{0}^{10} B(t)-D(t) d t=\int_{0}^{10} 1800 e^{0.836 t}-725 e^{0.019 t} d t \\
=\left(\frac{1000}{0.636} e^{\left.\left.0.036 t-\frac{725}{0.019} e^{0.019 t}\right)\right]_{0}^{1 u}}\right.
\end{gathered}
$$

$$
\approx 4052
$$

60. Let R be the region shown below. Set up the ingegrab that computes he VOLUME as R is rotated around the x -axis.

DON'T COMPUTE IT!!!

61. Set up the integral that computes the VOLUME of the region bounded by

62. Set up the integral that computes the VOLUME of the region bounded by

$$
y=e^{-x}, \quad y=4 \quad x=0 \quad \text { and } \quad x=10
$$

about the $x-a x i s \rightarrow d x$

63. Find the volume of the solid that results by revolving the region enclosed by the curves $y=\frac{5}{x}, y=0$, $x=5$, and $x=7$ about thex-axis. $\Rightarrow A X$

$$
\begin{aligned}
V & =\pi \int_{5}^{7}\left(\frac{5}{x}\right)^{2} d x \\
& =\pi \int_{5}^{7} \frac{25}{x^{2}} d x \\
& =25 \pi \int_{5}^{7} x^{-2} d x \\
& \left.=25 \pi\left(-\frac{1}{x}\right)\right]_{5}^{7} \\
& =\frac{10 \pi}{7}
\end{aligned}
$$

64. Find the VOLUME of the region bounded by

$$
y=7 x, \quad y=21 \quad x=1 \quad \text { and } \quad x=3
$$

around thex-axis $\rightarrow d x$

$$
\begin{aligned}
V & =\pi \int_{1}^{3}\left[21^{2}-(7 x)^{2}\right] d x \\
& =\pi \int_{1}^{3}\left(441-49 x^{2}\right) d x \\
& \left.=\pi\left(441 x-\frac{49 x^{3}}{3}\right)\right]_{1}^{3} \\
& =\frac{1274}{3} \pi
\end{aligned}
$$

$$
\text { Volume }=\frac{1274 \sqrt{3}}{3}
$$

65. Find the VOLUME of the region bounded by

$$
y=7 x, \quad y=0 \quad x=1 \quad \text { and } \quad x=3
$$

around the $\rightarrow d x$

$$
\left.=\pi\left(\frac{49 x^{3}}{3}\right)\right]_{1}^{3}
$$

$$
=\frac{49 \pi}{3}\left(3^{3}-1\right)
$$

$$
\text { Volume }=\frac{\frac{1274}{3} \mathrm{II}}{}
$$

66. Set up the integral that computes the VOLUME of the region bounded by

$$
y=x^{2}, \quad \text { and } \quad y=\sqrt{x}
$$

about the y-axis

$\begin{aligned} & \text { Bounds: } \\ & \sqrt{y}=y^{2} \\ & y=y^{4}\end{aligned}$

$$
\begin{aligned}
\sqrt{y} & =y^{2} \\
y & =y^{4} \\
0 & =y^{4}-y \\
0 & =y\left(y^{3}-1\right) \\
y & =0,1
\end{aligned}
$$

But y-axis $\Rightarrow d y$
Right $\rightarrow y=x^{2} \rightarrow x=\sqrt{y}$
$1+f+\rightarrow y=\sqrt{x} \rightarrow x=y^{2}$
67. Set up the integral that computes the VOLUME of the region bounded by

$$
y=x^{2}, \quad \text { and } \quad y^{2}=x
$$

$$
V=\pi \int_{0}^{1}(\sqrt{x})^{2}-\left(x^{2}\right)^{2} d x
$$

68. Find the VOLUME of the region bounded by

around the x -axis

$\frac{\text { Bounds: }}{x-x^{2}}=0$
$x(1-x)=0$

$$
x=0,1
$$

$$
\begin{aligned}
& y=x-x^{2}, \text { and } y=0 \\
& V=\pi \int_{0}^{1}\left(x-x^{2}\right)^{2} d x \\
&=\pi \int_{0}^{1}\left(x^{2}-2 x^{3}+x^{4}\right) d x \\
&\left.=\pi\left(\frac{x^{3}}{3}-\frac{2 x^{4}}{4}+\frac{x^{5}}{5}\right)\right]_{0}^{1} \\
&=\frac{\pi}{30}
\end{aligned}
$$

Volume $=$

69. Find the VOLUME of the solid generate by revolving the given region about the x-axis:

$$
V=\pi \int_{3}^{6}(8 \sqrt{x})^{2} d x
$$

$$
y=8 \sqrt{x}, \quad y=0, \quad x=3, \quad x=6
$$

70. Find the VOLUME of the region bounded by

71. Set up the integral that computes the VOLUME of the region bounded by

$$
y=x+8, \quad \text { and } \quad y=(x-4)^{2}
$$

about the x -axis
Bounds:

$$
\begin{aligned}
& x+8=(x-4)^{2} \\
& x+8= x^{2}-8 x+16 \\
& 0= x^{2}-9 x+8 \\
& 0=(x-8)(x-1) \\
& x=1,8
\end{aligned}
$$

72. Find the VOLUME of the region bounded by

73. Find the VOLUME of the solid generated by rotating the region bounded by

$$
y=x+2, \quad x=0, \quad y=6 \quad X=Y-2
$$

around the y-axis $\rightarrow d$ y problem.

$$
\begin{aligned}
v & =\pi \int_{2}^{6}(y-2)^{2} d y \\
& =\pi \int_{2}^{6}\left(y^{2}-4 y+4\right) d y \\
& \left.=\pi\left(\frac{y^{3}}{3}-\frac{4 y^{2}}{2}+4 y\right)\right]_{2}^{6}
\end{aligned}
$$

$$
V_{\text {Volume }}=64 \pi / 3
$$

74. Find the VOLUME of the region bounded by

$$
x+3 y=9, \quad x=0, \quad y=0
$$

around the y-axis

$$
\begin{aligned}
& x+3 y=9 \\
& 3 y=-x+9 \\
& y=\frac{-x}{3}+3
\end{aligned}
$$

But y-axis $\Rightarrow d p$
So $x+3 y=9$

$$
x=9-3 y
$$

75. Let R be the region shown to the right. Set up the integral that computes the VOLUME as R is rotated around the line $x=4$.

DON'T COMPUTE IT!!!

rotated around the line $x=4$.
76. SET-UP using the washer method. the VOLUME of the region bounded by
around the x -axis $d x$
(A) $\pi \int_{0}^{2}\left(2 x-x^{2}\right)^{2} d x$
(B) $\pi \int_{0}^{2}\left(4 x^{2}-x^{4}\right) d x$
(C) $\pi \int_{0}^{2}\left(2 x-x^{2}\right) d x$

$$
\begin{aligned}
& y=x^{2} \rightarrow y=1 \rightarrow \text { BALm } \\
& y=2 x \rightarrow y=2 \rightarrow \text { Top } \\
& V=\pi \int_{0}^{2}(2 x)^{2}-\left(x^{2}\right)^{2} d x \\
& =\pi \int_{0}^{2} 4 x^{2}-x^{4} d x
\end{aligned}
$$

(D) $\pi \int_{0}^{2}\left(x^{2}-2 x\right) d x$ Test Pt: $x=1$
(E) $\pi \int_{0}^{2}\left(x^{4}-4 x^{2}\right) d x$
(f) 2) $\left.\int_{0}^{2}\left(x x^{2}-2\right)^{2}\right) d x=\pi \int_{0}^{2} 4 x^{2}-x^{4} d x$
77. Set up the integral needed to find the volume of the solid obtained when the region bounded by

$$
\left.\begin{array}{rl}
y=-2-x^{2} \\
\text { and } \\
y=x^{2} \\
y & =3
\end{array}\right] \text { problem }
$$

Graph
is rotated about the line $y=3$.

78. SET-UP using the disk/ washer method. the VOLUME of the region bounded by

(A) $\pi \int_{0}^{27}\left(729-162 x+9 x^{2}\right) d x$
(B) $\pi \int_{0}^{27} 9 x^{2} d x$
(C) $\pi \int_{0}^{9} 9 x^{2} d x$
(D) $\pi \int_{0}^{9}\left(9 x^{2}-162 x\right) d x$
(E) $\pi \int_{0}^{27}\left(729-9 x^{2}\right) d x$
(F) $\pi \int_{0}^{9}\left(729-162 x+9 x^{2}\right) d x$

$$
y=3 x, \quad x=0, \quad y=27
$$

Bound: $\begin{aligned} 3 x & =27 \\ x & =9\end{aligned}$

$$
\begin{aligned}
V & =\pi \int_{0}^{9}(3 x-27)^{2} d x \\
& =\pi \int_{0}^{9}\left(9 x^{2}-162 x+729\right) d x
\end{aligned}
$$

79. SET-ITP using tho shell method the integral that computes the VOLUME of the region in quadrant I enclosed by the region defined by a triangle with vertices at $(0,0),(0,5)$, and $(4,0)$ about the y-axis.
(A) $\pi \int_{0}^{5}\left(8 x-\frac{5}{4} x^{2}\right) d x$
(B) $\pi \int_{0}^{5} \frac{5}{4} x^{2} d x$
(C) $\pi \int_{0}^{4} 4 x^{2} d x$
(D) $\pi \int_{0}^{4}\left(8 x-\frac{5}{4} x^{2}\right) d x$
(E) $\pi \int_{0}^{4}\left(10 x-\frac{5}{2} x^{2}\right) d x$
(F) $\pi \int_{0}^{5}\left(10 x-\frac{5}{2} x^{2}\right) d x$

$$
m=\frac{0-5}{4-0}=-\frac{5}{4}
$$

y-intercept is @ $5 \mathrm{~b} / \mathrm{c}$
$(0,5)$

$$
\begin{aligned}
\quad l & =-\frac{5}{4} x+5 \\
V & =2 \pi \int_{0}^{4} x\left(-\frac{5}{4} x+5\right) d x \\
& =\$ \int_{0}^{4}\left(10 x-\frac{5}{2} x^{2}\right) d x
\end{aligned}
$$

80. Find the VOLUME of the region bounded by

$$
y=3 x^{2}, \quad x=0, \quad y=27
$$

around the line $y=27$

$$
y=27 \Rightarrow d x \text { problem }
$$

Bounds: Given $x=0$

$$
\begin{aligned}
v & =\pi \int_{0}^{3}\left(3 x^{2}-27\right)^{2} d x \\
& =\pi \int_{0}^{3}\left(9 x^{4}-162 x^{2}+729\right) d x \\
& \left.=\pi\left(\frac{9 x^{5}}{5}-54 x^{3}+729 x\right)\right]_{0}^{3} \\
& =11664.4 \pi
\end{aligned}
$$

$$
\begin{aligned}
27 & =3 x^{2} \\
9 & =x^{2} \rightarrow x=3
\end{aligned} \text { Volume }=
$$

\qquad
81. Using the Shell Method, set up the integral that computes the VOLUME of the region bounded by

Bounds: $\begin{aligned} 0 & =2 y-y^{2} \\ 0 & =y(2-y)\end{aligned}$

$$
\begin{gathered}
0=2 y-y^{2} \\
0=y(2-y) \\
y=0,2
\end{gathered}
$$

$$
2 \pi \int_{0}^{2} y\left(2 y-y^{2}\right) d y
$$

$$
\text { Volume }=
$$

\qquad
82. Using the Shell Method, set up the integral that computes the VOLUME of the region bounded by about the $y=2-x^{2}, \quad$ and $\quad y=x^{2}$

$$
\text { Bounds: } \begin{aligned}
2-x^{2} & =x^{2} \\
2 & =2 x^{2} \\
1 & =x^{2} \\
x & = \pm 1
\end{aligned}
$$

Test Pt: $x=0$

$$
\begin{aligned}
& y=2-x^{2} \rightarrow y=2 \rightarrow T_{\text {op }} \\
& y=x^{2} \rightarrow y=0 \rightarrow \text { Bottom }
\end{aligned}
$$

$$
2 \pi \int_{-1}^{1} \times\left(2-2 x^{2}\right) d x
$$

83. Using the Shell Method, set up the integral that computes the VOLUME of the region bounded by

84. Using the Shell Method, sgt up the integral that computes the VOLUME of the region bounded by

$$
\pm \quad \text { 〕, } y=x \text {, and } y=x^{2}
$$

about the $\operatorname{lin}(x=-2 . \rightarrow d x \quad$ Since $x=-2$ is on the left Bounds:

$$
\begin{aligned}
& x=x^{2} \\
& x-x^{2}=0 \\
& x(1-x)=0 \\
& x=0,1
\end{aligned}
$$

85. Using the Shell Method, sgt up the integral that computes the VOLUME of the region bounded by

$$
y=7 x^{2}, \quad y=0 \text { and } \quad x=2
$$

about the line $x=3$.

$$
V=2 \pi \int_{0}^{2}(\quad,)\left(7 x^{2}\right) d x
$$

Since $x=3$ is larger than the bounds,

$$
V=2 \pi \int_{0}^{2}(3-x)\left(7 x^{2}\right) d x
$$

86. Using the Shell Method, set up the integral that computes the VOLUME of the region bounded by about the line $y=-2 . \rightarrow d y$

Bounds:

$$
\begin{gathered}
y^{2}+1=2 \\
y^{2}=1 \\
y= \pm 1
\end{gathered}
$$

Test Pt: $y=0$

$$
\begin{aligned}
& x=y^{2}+1 \rightarrow x=1 \rightarrow \text { Left } \\
& x=2 \rightarrow x=2 \rightarrow \text { Right }
\end{aligned}
$$

Since $y=-2$ is smaller than the bounds

$$
V=2 \pi \int_{-1}^{1}(y-(-2))\left(2-\left(y^{2}+1\right)\right) d
$$

Volume
87. The rate of change of the population $n(t)$ of a sample of bacteria is directly proportional to the number of bacteria present, so $N^{\prime}(t)=k N$, where time t is measured in minutes. Initially, there are 210 bacteria present. If the number of bacteria after 5 hours is 360 , find the growth rate k in terms of minutes. Round to four decimal places.

$$
\text { Recall } N^{\prime}=k N \rightarrow N=C e^{k+}
$$

$$
N(0)=210: 210=C e^{k \cdot 0}
$$

$$
210=C \rightarrow N=210 e^{u+}
$$

$$
\begin{aligned}
N(5)=360: 360 & =210 e^{k \cdot 5} \\
\frac{12}{7} & =e^{5 k}
\end{aligned}
$$

$$
\ln (12 / 7)=5 K_{k=}
$$

$$
\frac{1}{5} \ln \left(\frac{12}{7}\right)
$$

88. Let y denote the mass of a radioactive substance at time t. Suppose this substance obeys the equation

$$
y^{\prime}=-18 y
$$

Assume that initially, the mass of the substance is $y(0)=20$ grams. At what time t in hours does half the original mass remain? Round your answer to 3 decimal places.

$$
\begin{aligned}
y^{\prime}=-18 y & \Rightarrow y=C e^{-18 t} \\
y(0)=20 \Rightarrow & 20=c e^{-18(1)} \Rightarrow y=20 e^{-18 t}
\end{aligned}
$$

$$
\text { We want solve } \frac{1}{2}(20)=y(t) \text { for } t \text {. }
$$

$$
\begin{aligned}
& 10=20 e^{-18+} \\
& 1 / 2=e^{-18 t} \\
& \ln (1 / 2)=-18+ \\
& \frac{\ln (1 / 2)}{-18}=+
\end{aligned}
$$

89. Find the general solution to the differential equation:

90. Find the general solution to the differential equation:
$\frac{d y}{d x}=5 y$

Rewrite $d y=5 y d x$

$$
\begin{aligned}
\frac{d y}{y} & =5 d x \\
\int \frac{d y}{y} & =\int 5 d x \\
\ln |y| & =5 x+c \\
|y| & =e^{5 x+c} \\
\pm y & =e^{c} e^{5 x} \\
y & =+e^{4} e^{5 x} \\
y & =c e^{5 x}
\end{aligned}
$$

or memorize

$$
\begin{aligned}
& \frac{d y}{d x}=k y \\
& \Rightarrow y=C e^{k x}
\end{aligned}
$$

91. Find the general solution to the differential equation:

$$
\frac{d y}{d x}=\frac{-x}{y}
$$

Rewrite: $y d y=-x d x$

$$
\begin{aligned}
& \int y d y=\int-x d x \\
& \frac{y^{2}}{2}=-\frac{x^{2}}{2}+c \\
& y^{2}=-x^{2}+c \\
& y= \pm \sqrt{c-x^{2}}
\end{aligned}
$$

$$
\pm \sqrt{c-x^{2}}
$$

92. Find the general solution to the given differential question. Use C as an arbitrary constant.

$$
\frac{d y}{d t}-15 y=0
$$

Note there are 2 ways to do this problem.
(1) Separation of Variables
(2) First-order Linear Egn

$$
\begin{aligned}
& \ln |y|=15+c \\
& y=e^{15 t+c} \\
& y=e^{c} e^{15 t} \\
& y=c e^{15 t}
\end{aligned}
$$

By method 1,

$$
\begin{aligned}
& \frac{d y}{d t}=15 y \\
& \frac{d y}{d y}=15 d t \\
& \int \frac{d y}{y}=\int 15 d t
\end{aligned}
$$

$$
y=C e^{15 t}
$$

93. Find the general solution to the given differential question. Use C as an arbitrary constant.

$$
\begin{aligned}
& y d y=3 d x \\
& \int y d y=\int 3 d x \\
& y^{2}=3 x+c \\
& 2 \\
& y^{2}=6 x+2 c \\
& y^{2}=6 x+c \\
& y= \pm \sqrt{6 x+c} \quad \frac{d y}{d x}=\frac{3}{y} \\
& y=\square \sqrt{6 x+c}
\end{aligned}
$$

94. Find the general solution to the given differential question. Use C as an arbitrary constant.

$$
\begin{aligned}
\frac{d y}{y} & =3 x^{2} d x \\
\int \frac{d y}{y} & =\int 3 x^{2} d x \\
\ln |y| & =x^{3}+c \\
y & =e^{x^{3}+c}+c \\
y & =e^{c} e^{x^{3}} \\
y & =C e^{x^{3}} \quad C=\quad C e^{x^{3}}
\end{aligned}
$$

95. Find the general solution to the given differential question. Use C as an arbitrary constant.

$$
\begin{aligned}
& e l y=8 e^{-4 t} e^{-y} d t \\
& e^{y} d y=8 e^{-4 t} d t \\
& \int e^{y} d y=\int 8 e^{-y t} d t \\
& e^{y}=\frac{8}{-4} e^{-4 t}+c \\
& e^{y}=-2 e^{-y t}+c \\
& y=\ln \left(-2 e^{-y+t}+c\right)
\end{aligned}
$$

96. Find the particular solution to the differential equation.
$\frac{d y}{d x}=\frac{3 x+2}{2 y}$ and $y(0)=4$

$$
\begin{array}{ll}
2 y d y=(3 x+2) d x \\
2 y d y=\int(3 x+2) d x & \text { So } y^{2}=\frac{3 x^{2}}{2}+2 x+16 \\
y^{2}=\frac{3 x^{2}}{2}+2 x+c & y= \pm \sqrt{\frac{3 x^{2}}{2}+2 x+16}
\end{array}
$$

when $y(0)=4$

$$
\begin{gathered}
4^{2}=0+0+c \\
16=C
\end{gathered}
$$

$$
\pm \sqrt{\frac{3 x^{2}}{2}+2 x+16}
$$

97. Find the particular solution to the differential equation.

$$
\frac{d y}{d x}=\frac{5 y}{6 x+3} \text { and } y(0)=1
$$

$$
\begin{aligned}
& \frac{d y}{y}=\frac{5}{6 x+3} d x \\
& \int \frac{d y}{y}=\int \frac{5}{6 x+3} d x \\
& \ln |y|=\frac{5}{6} \ln |6 x+3|+c \\
& y=\exp \left[\frac{5}{6} \ln |6 x+3|+c\right] \\
& y=e^{c} \exp \left[\ln |6 x+3|^{5 / 6}\right] \\
& y=c \cdot|6 x+3|^{5 / 6}
\end{aligned}
$$

When $y(0)=1$

$$
\begin{aligned}
& 1=C|6(0)+3|^{5 / 6} \\
& 1=C \cdot 3^{5 / h} \\
& c=3^{-5 / 6}
\end{aligned}
$$

$y=33^{-5 / 6} \cdot|6 x+3|^{5 / 6}$
98. Consider the following IVP:
$\frac{d y}{d x}=11 x^{2} e^{-x^{3}}$ where $y=10$ when $x=2$
Find the value of the integration constant, C.

$$
\begin{aligned}
& d y=-11 x^{2} e^{-x^{3}} d x \\
& \int d y=\underbrace{\int 11 x^{2} e^{-x^{3}} d x}_{u=-x^{3}} \\
& d u=-3 x^{2} d x \\
& y=\int-\frac{11}{3} e^{u} d u \\
& y=-\frac{11}{3} e^{-x^{3}}+C
\end{aligned}
$$

when $y=10$ and $x=2$

$$
\begin{aligned}
& 10=-\frac{11}{3} e^{-2^{3}}+c \\
& 10=-\frac{11}{3} e^{-8}+c \\
& c=10+\frac{11}{3} e^{-8} \\
& c=10+\frac{11}{3} e^{-8}
\end{aligned}
$$

99. Find the particular solution to the given differential equation if $y(2)=3$

$$
\begin{gathered}
y^{2} d y=x d x \\
\int y^{2} d y=\int x d x \\
y^{3}=\frac{x^{2}}{2}+C \\
\text { Find } C \cdot w(2)=3 \\
\frac{3^{3}}{3}=\frac{2^{2}}{2}+C \\
9=2+c \\
7=c
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x}{y^{2}} \\
& \frac{y^{3}}{3}=\frac{x^{2}}{2}+7 \\
& y^{3}=\frac{3 x^{2}}{2}+21 \\
& y=\sqrt[3]{\frac{3 x^{2}}{2}+21} \\
& y=\sqrt{\frac{3 x^{2}}{2}+21}
\end{aligned}
$$

100. Calculate the constant of integration, C, for the given differential equation.

Note we want C when $y^{(1)}=2$

$$
\begin{aligned}
& 3(2)^{2}=\frac{7(1)^{4}}{4}+c \\
& 12=\frac{7}{4}+c \\
& c=41 / 4
\end{aligned}
$$

101. The volume of an object $V(t)$ in cubic millimeter at any time t in seconds changes according to the model

$$
\frac{d V}{d t}=\cos \left(\frac{t}{10}\right)
$$

where $V(0)=5$. Find the volume of the object at $t=3$ seconds. Round to 4 decimal places.
Rewrite $d V=\cos \left(\frac{t}{10}\right) d t$

$$
\begin{aligned}
V(3)= & 10 \sin \left(\frac{3}{11}\right)+5 \\
& \approx 7.9552
\end{aligned}
$$

$$
V=10 \sin \left(\frac{ \pm}{10}\right)+C
$$

$$
\text { Find } \begin{aligned}
C \quad w / v(0)=5 \\
S=10 \sin \left(\frac{0}{10}\right)+C \\
C=5
\end{aligned}
$$

$$
\text { So } V=10 \sin \left(\frac{t}{10}\right)+5
$$

102. What is the integrating factor of the following differential equation?

$$
\begin{aligned}
\frac{2 y^{\prime}+\left(\frac{6}{x}\right) y}{2} & =\frac{10 \ln (x)}{2} \\
y^{\prime}+\frac{3}{x} y & =5 \ln x \\
P(x) & =\frac{3}{x} Q(x)=5 \ln x \\
u(x) & =\exp [\sin d x] \\
& =\exp [3 \ln x] \\
& =e x p\left[\ln x^{3}\right] \\
& =x^{3} \\
u(x) & =x
\end{aligned}
$$

103. What is the integrating factor of the following differential equation?

$$
\begin{aligned}
P(x)= & \left.\frac{2 x+3}{x} \quad Q(x)=10 \ln (x) \right\rvert\, \\
u(x) & =e^{2 x+3 \ln x} \\
& =e^{2 x} \cdot e^{3 \ln x} \\
& =\exp \left[\int P(x) d x\right] \\
& =e^{2 x} \cdot e^{\ln x^{3}} \\
& =x^{3} e^{2 x} \\
& \left.=\exp \left[\int 2+\frac{2 x+3}{x} d x\right] d x\right] \\
&
\end{aligned}
$$

104. What is the integrating factor of the following differential equation?

$$
\frac{x^{8} y^{\prime}-14 x^{7} y}{X^{8}}=\frac{32 e^{7 x}}{X^{8}}
$$

$$
y^{\prime}+\left(\frac{-1 y}{x}\right) y=\underbrace{\frac{32 e^{7 x}}{x^{3}}}_{Q}
$$

$$
=\exp \left[S-\frac{14}{x} d x\right]
$$

$$
=\exp [-14 \ln \times]
$$

$$
=\exp \left[\ln x^{-14}\right]
$$

$$
\begin{aligned}
& =x^{-14} \\
& =\frac{1}{x^{14}}
\end{aligned}
$$

105. What is the integrating factor of the following differential equation?

$$
\begin{aligned}
\frac{(x+1) \frac{d y}{d x}-2\left(x^{2}+x\right) y}{(x+1)} & =\frac{(x+1) e^{x^{2}}}{(x+1)} \\
\frac{d y}{d x}-\frac{2 x(x+1)}{(x+1)} y & =e^{x^{2}} \\
\frac{d y}{d x}+(-2 x) \cdot y & =e^{x^{2}} \\
u(x) & =e x p[S p(x) d x] \\
& =e x p[S-2 x d x] \\
& =e x p\left[-x^{2}\right] \\
u(x) & =
\end{aligned}
$$

106. What is the integrating factor of the following differential equation?
107. What is the integrating factor of the following differential equation?

$$
y^{\prime}+\tan (x) \cdot y=\sec (x)
$$

$$
u(x)=e x p\left[\int p(x) d y\right]
$$

$$
=e x p[\operatorname{stan} x d x]
$$

$$
=e x p\left[\int \frac{\sin x}{\cos x} d x\right]
$$

$$
u=\cos x
$$

$$
d u=-\sin x d x
$$

$$
=e \times p\left[-\int \frac{d u}{u}\right]
$$

$$
=e x p[-\ln u]
$$

$$
\begin{aligned}
u(x) & =\exp [-\ln (\cos x)] \\
& =\exp \left[\ln (\cos x)^{-1}\right] \\
& =(\cos x)^{-1}=\sec x
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}+\cot (x) \cdot y=\sin ^{2}(x) \\
& q(x)=e x p\left[\int p(x) d y\right] \\
& \text {-exp[} \int\langle\Delta t x d x] \\
& =C \times p\left[\int \frac{\cos x}{\sin x} d x\right] \\
& u=\operatorname{jin} x \\
& d u=\cos x d x \\
& =e \times p\left[<\frac{d u}{u}\right] \\
& =\exp [\ln u] \\
& u(x)=\exp [\ln \sin x] \\
& u(x)=
\end{aligned}
$$

Note there are 2 ways to do this problem. (1) Separation of Variables 108. Find the general solution of the following differential equation. (4) First-order L' near Egn

$$
\frac{d y}{d y}+(4 x-1) y=8 x-2
$$

$$
\begin{aligned}
& P(x)=4 x-1 \quad Q(x)=8 x-2 \\
& u(x)=\exp [S(4 x-1) d x] \\
& =\exp \left[2 x^{2}-x\right] \\
& =e^{2 x^{2}-x} \\
& y u(x)=\int Q(x) u(x) d x+C \\
& y e^{2 x^{2}-x}=\underbrace{\int(8 x-2) e^{2 x^{2}-x} d x}_{\begin{array}{c}
u=2 x^{2}-x \\
d u=4 x-1 d x
\end{array}}+C \\
& y e^{2 x^{2}-x}=\int \frac{8 x-2}{4 x-1} e^{u} d u+c \\
& y e^{2 x^{2}-x}=\int \frac{2(4 x-1)}{4 x-1} e^{4} d u+c \\
& y e^{2 x^{2}-x}=\int 2 e^{u} d u+c \\
& \begin{array}{l}
y e^{2 x^{2}-x}=2 e^{u}+c \\
y e^{2 x^{2}-x}=2 e^{2 x^{2}-x}+c
\end{array} \\
& y=2+C e^{x-2 x^{2}} \\
& \begin{array}{l}
y e^{2 x^{2}-x}=2 e^{u}+c \\
y e^{2 x^{2}-x}=2 e^{2 x^{2}-x}+c
\end{array} \\
& y=\frac{2 e^{2 x^{2}-x}+c}{e^{2 x^{2}-x}} \\
& y=2+C e^{-\left(2 x^{2}-x\right)} \\
& =2+c e^{x-2 x^{2}} \\
& =2+c e^{x-2 x}
\end{aligned}
$$

109. Find the general solution of the following differential equation.
$\frac{d y}{d x}+\frac{6 y}{x}=x+10$

$$
\begin{aligned}
P(x) & =\frac{6}{x} \quad Q(x)=x+10 \\
u(x) & =\exp [S P(x) d x] \\
& =\exp \left[\int \frac{6}{x} d x\right] \\
& =\exp [6 \ln x] \\
& =\exp \left[\ln \left(x^{6}\right)\right] \\
& =x^{6} \\
y \cdot u(x) & =\int Q(x) u(x) d x+c \\
y x^{6} & =\int(x+10) x^{6} d x+c \\
y x^{6} & =\int\left(x^{7}+10 x^{6}\right) d x+c \\
y x^{6} & =\frac{x^{8}}{8}+\frac{10 x^{7}}{7}+c \\
y & =\frac{x^{2}}{8}+\frac{10 x}{7}+\frac{c}{x^{6}}
\end{aligned}
$$

$$
y=\frac{x^{2}}{8}+\frac{10 x}{7}+\frac{c}{x^{6}}
$$

110. Find the particular solution to the differential equation.
$\frac{d y}{d x}=6 x^{2}(y+4)$ and $y(0)=3$

$$
\begin{aligned}
& y^{\prime}=6 x^{2} y+24 x^{2} \\
& y^{\prime}-6 x^{2} y=24 x^{2} \\
& P(x)=-6 x^{2} Q(x)=24 x^{2} \\
& u(x)=\exp \left[\int-6 x^{2} d x\right] \\
& =\exp \left[-2 x^{3}\right] \\
& \left.=e^{-2 x^{3}}\right] \\
& y \cdot u(x)=\int Q(x) u(x) d x+c \\
& y e^{-2 x^{3}}=\underbrace{u=-2 x^{3}}_{=-2 x^{2} x^{2} e^{-2 x^{3}} d x+C} \\
& d u=-6 x^{2} d x \\
& y e^{-2 x^{3}}=\int-4 e^{u} d u+C \\
& y e^{-2 x^{3}}=-4 e^{u}+c \\
& y e^{-2 x^{3}}=-4 e^{-2 x^{3}}+C \\
& y=-4+C e^{2 x^{3}}
\end{aligned}
$$

With y

$$
\begin{gathered}
3=-4+C e^{2 \cdot 0^{3}} \\
3=-4+c \\
7=c
\end{gathered}
$$

So $y=-4+7 e^{2 x^{3}}$

$$
-4+7 e^{2 x^{3}}
$$

111. Solve the initial value problem
$x^{4} y^{\prime}+4 x^{3} \cdot y=10 x^{9}$ with $f(1)=23$

$$
\begin{aligned}
& \frac{x^{4} y^{\prime}+4 x^{3} y}{x^{4}}=\frac{10 x^{9}}{x^{4}} \\
& y^{\prime}+\frac{4}{x} \cdot y \\
& \begin{aligned}
P(x)=\frac{4}{x} & Q(x)=10 x^{5} \\
u(x) & =\exp \left[\int P(x) d x\right] \\
& =\exp \left[S \frac{4}{x} d x\right] \\
& =\exp [4 \ln x] \\
& =\exp \left[\ln x^{4}\right] \\
& =x^{4}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& y \cdot u(x)=\int Q(x) u(x) d x+c \\
& y \cdot x^{4}=\int 10 x^{5} x^{4} d x+c \\
& y \cdot x^{4}=\int 10 x^{9} d x+c \\
& y \cdot x^{4}=x^{10}+c \\
& y=\frac{x^{10}}{x^{4}}+\frac{c}{x^{4}} \\
& y=x^{6}+\frac{c}{x^{4}} \\
& 23=1+\frac{c}{1} \\
& 22=c \\
& y=x^{6}+\frac{22}{x^{4}}
\end{aligned}
$$

$$
x^{6}+\frac{22}{x^{4}}
$$

112. (a) Use summation notation to write the series in compact form.

$$
\begin{aligned}
& 1-0.6+0.36-0.216+\ldots \\
= & 1-\frac{6}{10}+\frac{36}{100}-\frac{216}{1000}+\ldots \\
= & 1-\frac{6}{10}+\left(\frac{6}{10}\right)^{2}-\left(\frac{6}{10}\right)^{3}+\ldots \\
= & \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{6}{10}\right)^{n} \\
= & \sum_{n=0}^{\infty}\left(\frac{-6}{10}\right)^{n} \quad \text { Answer: }
\end{aligned}
$$

$$
\sum_{n=0}^{\infty}\left(\frac{-6}{10}\right)^{n}
$$

(b) Use the sum from (a) and compute the sum.

Answer:
113. If the given series converges, then find its sum. If not, state that it diverges.

$$
\begin{aligned}
& \text { Note } r=3 / 2 \text { and } \sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n} \\
& \left|\frac{3}{2}\right|<1 \text { is false } \\
& \text { So the sum diverges } \\
& \qquad \sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n}=\text { diverges }
\end{aligned}
$$

114. If the given series converges, then find its sum. If not, state that it diverges.

115. If the given series converges, then find its sum. If not, state that it diverges.

116. Compute

$$
\begin{aligned}
&=\frac{5^{3}}{6}+\frac{5^{4}}{6^{2}}+\frac{5^{5}}{6^{3}}+\cdots \\
&=\frac{5^{3}}{6}\left(1+\frac{5}{6}+\left(\frac{5}{6}\right)^{2}+\cdots\right) \\
&=\frac{125}{6} \sum_{n=0}^{\infty}\left(\frac{5}{6}\right)^{n}=\frac{125}{6} \cdot \frac{1}{1-5 / 6} \\
&=\frac{125}{6} \cdot \frac{1}{1 / 6}=\frac{125}{6} \cdot \frac{6}{1}=125 \\
& \sum_{n=1}^{\infty}
\end{aligned}
$$

117. Compute

$$
\begin{aligned}
\Rightarrow & =\sum_{n=0}^{\infty} \frac{(-2)^{n}}{3 \cdot 3^{2 n}} \\
& =\sum_{n=0}^{\infty} \frac{1}{3} \cdot \frac{(-2)^{n}}{\left(3^{2}\right)^{n}} \\
& =\sum_{n=0}^{\infty} \frac{1}{3}\left(-\frac{2}{9}\right)^{n} \\
& =\frac{1 / 3}{1-(-2 / 9)} \\
& =\frac{1 / 3}{1+2 / 4} \\
& =\frac{1 / 3}{119} \\
& =\frac{1}{3} \cdot \frac{9}{11} \\
& =3 / 11
\end{aligned}
$$

118. Evaluate the sum of the following infinite series.

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n} \cdot 5^{1}}{\left(3^{2}\right)^{n}} \\
& =\frac{5}{14 / 9} \\
& =\frac{5}{1} \cdot \frac{9}{14} \\
& =\sum_{n=0}^{\infty} 5\left(\frac{-5}{9}\right)^{n} \\
& =\frac{45}{14} \\
& =\frac{5}{1-(-5 / 9)}
\end{aligned}
$$

119. Evaluate the sum of the following infinite series.

$$
\begin{aligned}
& =\frac{4(3)^{0}}{5^{1}}+\frac{4(3)^{1}}{5^{2}}+\frac{4(3)^{2}}{5^{3}}+\frac{4(3)^{3}}{5^{4}}+\ldots \\
& =\frac{4}{5}\left(1+\frac{3}{5}+\left(\frac{3}{5}\right)^{2}+\left(\frac{3}{5}\right)^{3}+\ldots\right) \\
& =\frac{4}{5} \sum_{n=0}^{\infty}\left(\frac{3}{5}\right)^{n} \\
& =\frac{4}{5} \cdot \frac{1}{1-3 / 5} \\
& =\frac{4}{5} \cdot \frac{1}{2 / 5}=\frac{4}{5} \cdot \frac{5}{2}=2
\end{aligned}
$$

120. Evaluate the sum of the following infinite series.

$$
\begin{array}{ll}
=\sum_{n=1}^{\infty}\left(\frac{3-1}{1} \cdot \frac{3^{n}}{4^{n}}+\frac{(-1)^{1}}{1} \cdot \frac{(-1)^{n}}{9^{n}}\right)^{\sum_{n=1}^{\infty}\left(\frac{3^{n-1}}{4^{n}}+\frac{(-1)^{n+1}}{9^{n}}\right)}= & =\frac{1}{3}\left(\frac{3}{4}\right)\left[1+\left(\frac{3}{4}\right)+\left(\frac{3}{4}\right)^{2}+\ldots\right] \\
=\sum_{n=1}^{\infty}\left(\frac{1}{3}\left(\frac{3}{4}\right)^{n}-\left(\frac{-1}{9}\right)^{n}\right) & \\
=\frac{1}{3}\left(\frac{3}{4}\right)^{1}-\left(\frac{-1}{9}\right)^{1} \\
& +\frac{1}{3}\left(\frac{3}{4}\right)^{2}-\left(1+\left(-\frac{1}{9}\right)+\left(\frac{-1}{9}\right)^{2} \cdots\right] \\
+\frac{1}{3}\left(\frac{3}{4}\right)^{3}-\left(\frac{-1}{9}\right)^{3} & =\frac{1}{4} \sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}+\frac{1}{9} \sum_{n=0}^{\infty}\left(\frac{-1}{4}\right)^{n} \\
+\ldots & =\frac{1}{4} \cdot \frac{1}{1-3 / 4}+\frac{1}{9} \cdot \frac{1}{1-(-1 / 9)}
\end{array}
$$

121. Find the radius of convergence for the power series shown below.

122. Find the radius of convergence for the power series shown below.

By algebra

$$
\begin{aligned}
& x^{2}<1 / 7 \\
& x< \pm \sqrt{1 / 7} \\
& |x|<\sqrt{1 / 7}
\end{aligned}
$$

$R=$
123. Express $f(x)=\frac{3}{1+2 x}$ as a power series and determine it's radius of converge.

$$
\begin{aligned}
& \frac{3}{1+2 x}=\frac{3}{1} \cdot \frac{1}{1+2 x}=\frac{3}{1} \cdot \frac{1}{1-(-2 x)} \\
& \frac{1}{1-(-2 x)}
\end{aligned}=\sum_{n=0}^{\infty}(-2 x)^{n} \text { where }|-2 x|<1=\frac{3}{1-(-2 x)}=3 \sum_{n=0}^{\infty}(-2 x)^{n} \text { where } 2|x|<1 .
$$

$$
\frac{3}{1+2 x}=
$$

$$
R=
$$

124. Express $f(x)=\frac{x}{4+3 x^{2}}$ as a power series.

$$
\begin{aligned}
& \frac{x}{4\left(1+3 x^{2} / 4\right)}=\frac{x}{4} \cdot \frac{1}{1-\left(-\left(3 x^{2} / 4\right)\right)} \\
& \frac{1}{1-\left(-3 x^{2} / 4\right)}=\sum_{n=0}^{\infty}\left(\frac{-3 x^{2}}{4}\right)^{n} \\
& f(x)=\frac{x}{4} \cdot \frac{1}{1-\left(-3 x^{2} / 4\right)}=\frac{x}{4} \sum_{n=0}^{\infty}\left(\frac{-3 x^{2}}{4}\right)^{n} \\
& f(x)=\frac{x}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n} x^{2 n}}{4^{n}} \\
& f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n} x^{2 n+1}}{4^{n+1}} \\
& \frac{x}{4+3 x^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n} x^{2 n+1}}{4^{n+1}} .
\end{aligned}
$$

125. What are the first 3 non-zero terms of the Maclaurin series representation of the follow?

$$
\int \sin \left(x^{3 / 2}\right) d x
$$

$$
\begin{aligned}
\sin x & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \\
\sin \left(x^{3 / 2}\right) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(x^{3 / 2}\right)^{2 n+1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{3 n+3 / 2}
\end{aligned}
$$

126. What are the first 3 non-zero terms of the Maclaurin series representation of the follow?

$$
\begin{aligned}
& \int e^{-3 x} d x \\
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& e^{-3 x}=\sum_{n=0}^{\infty} \frac{(-3 x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n} x^{n}}{n!} \\
& \int e^{-3 x} d x=\int \sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n} x^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n}}{n!} \int x^{n} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n}}{n!} \cdot \frac{x^{n+1}}{(n+1)} \\
& =\frac{(-1)^{0} 3^{0}}{0!} \cdot \frac{x^{1}}{1}+\frac{(-1)^{1} 3^{1}}{1!} \cdot \frac{x^{2}}{2}+\frac{(-1)^{2} 3^{2}}{2!} \cdot \frac{x^{3}}{3} \\
& \int e^{-3 x} d x=x-\frac{3}{2} x^{2}+\frac{3}{2} x^{3}
\end{aligned}
$$

127. Evaluate the following indefinite integral as a series. [Leave your answer as a sum.]

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& e^{5 x^{3}}=\sum_{n=0}^{\infty} \frac{\left(5 x^{3}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{5^{n} x^{3 n}}{n!} \\
& 5 e^{5 x^{3}}=5 \sum_{n=0}^{\infty} \frac{5^{n} x^{3 n}}{n!}=\sum_{n=0}^{\infty} \frac{5^{n+1}}{n!} x^{3 n} \\
& \int 5 e^{5 x^{3}} d x=\int \sum_{n=0}^{\infty} \frac{5^{n+1}}{n!} x^{3 n} d x \\
& =\sum_{n=0}^{\infty} \frac{5^{n+1}}{n!} \int x^{3 n} d x \\
& =\sum_{n=0}^{\infty} \frac{5^{n+1}}{n!} \cdot \frac{x^{3 n+1}}{(3 n+1)} \int 5 e^{5 x^{3}} d x=
\end{aligned}
$$

$$
\sum_{n=0}^{\infty} \frac{5^{n+1}}{n!} \cdot \frac{x^{3 n+1}}{(3 n+1)}
$$

128. Use the first three terms of the powers series representation of the $f(x)=\frac{3 x}{10+2 x}$ to estimate $f(0.5)$. Round to 4 decimal places.

$$
\begin{aligned}
& \frac{3 x}{10\left(1+\frac{2}{10} x\right)}=\frac{3 x}{16} \cdot \frac{1}{1-\left(-\frac{2}{10} x\right)} \\
& \quad \frac{1}{1-\left(-\frac{2}{10} x\right)}=\sum_{n=0}^{\infty}\left(\frac{-2}{10} x\right)^{n} \\
& f(x)=\frac{3 x}{10} \cdot \frac{1}{1-\left(-\frac{2}{10} x\right)}=\frac{3 x}{10} \sum_{n=0}^{\infty}\left(-\frac{2}{10} x\right)^{n} \\
& f(x)
\end{aligned}=\frac{3 x}{10} \sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{n}}{10^{n}}{ }^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} \cdot 3^{n+1}}{10^{n+1}} . \begin{aligned}
f(0.5) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} \cdot 3 \cdot(0.5)^{n+1}}{10^{n+1}} \\
& =\frac{3(0.5)}{10} \cdot \frac{2 \cdot 3(0.5)^{2}}{10^{2}}+\frac{2^{2} \cdot 3(0.5)^{3}}{10^{3}} \\
& \approx 0.1365
\end{aligned}
$$

129. Use a power series to approximate the definite integral using the first 3 terms of the series.

$$
\begin{aligned}
& \int_{0}^{0.24} \frac{x}{5+x^{6}} d x \\
& \frac{x}{5+x^{6}}=\frac{x}{5-\left(-x^{6}\right)}=\frac{x}{5\left[1-\left(-x^{6} / 5\right)\right]}=\frac{x}{5} \cdot \frac{1}{1-\left(-x^{6} / 5\right)} \\
& \frac{1}{1-\left(-x^{6 / 5}\right)}=\sum_{n=0}^{\infty}\left(-\frac{x^{6}}{5}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n}}{s^{n}} \\
& \frac{x}{5} \cdot \frac{1}{1-\left(-x^{6} / 5\right)}=\frac{x}{5} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n}}{5^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+1}}{5^{n+1}} \\
& \int_{0}^{0.21} \frac{x}{5+x^{6}} d x=\int_{0}^{0.24} \sum_{n=8}^{\infty} \frac{(-1)^{n} x^{6 n+1}}{5^{n+1}} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{5^{n+1}} \int_{0}^{0.24} x^{6 n+1} d x \\
& \left.=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{5^{n+1}} \cdot \frac{x^{6 n+2}}{(6 n+2)}\right]_{0}^{0.24} \\
& \left.=\left(\frac{1}{5} \cdot \frac{x^{2}}{2}-\frac{1}{5^{5}} \cdot \frac{x^{8}}{8}+\frac{1}{5^{3}} \cdot \frac{x^{14}}{14}\right)\right]_{0}^{0.2 y} \\
& \approx 0.00576 \\
& \int_{0}^{0.24} \frac{x}{5+x^{6^{d}}} \approx 0.00576
\end{aligned}
$$

130. Use a power series to approximate the definite integral using the first 4 terms of the series. Round to 5 decimal places.

$$
\int_{0}^{0.11} \frac{1}{1+x^{4}} d x
$$

$$
\frac{1}{1+x^{4}}=\frac{1}{1-\left(-x^{4}\right)}=\sum_{n=0}^{\infty}\left(-x^{4}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{4 n}
$$

$$
\int_{0}^{0.11} \frac{1}{1+x^{4}} d x=\int_{0}^{0.11} \sum_{n=0}^{\infty}(-1)^{n} x^{4 n} d x
$$

$$
=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{0.11} x^{4 n} d x
$$

$$
\left.=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+1}}{4 n+1}\right]_{0}^{0.11}
$$

$$
\left.=\left(x-\frac{x^{5}}{5}+\frac{x^{9}}{9}-\frac{x^{13}}{13}\right)\right]_{0}^{0}
$$

$\int_{0}^{0.11} \frac{1}{1+x^{4}} d x \approx$ \qquad
131. Use a power series to approximate the definite integral using the first 3 terms of the series. Round to 5 decimal places.

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n} e^{-x^{2}} d x \\
& \int_{0}^{0.23} e^{-x^{2}} d x=\int_{0}^{0.23} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n} d x \\
&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{0.23} x^{2 n} d x \\
&\left.=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{x^{2 n-1}}{2 n+1}\right]_{0}^{0.23} \\
&\left.=\left(\frac{x}{0}-\frac{x^{3}}{1!(3)}+\frac{x^{5}}{2!(5)}\right)\right]_{0}^{0.23}
\end{aligned} \int_{0}^{0.23}
$$

132. Use a power series to approximate the definite integral using the first 4 terms of the series. Round to 5 decimal places.

$$
\int_{0}^{0.45} 4 x \cos (\sqrt{x}) d x
$$

$$
\begin{array}{rlrl}
\cos (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} & f(x) & \left.=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \cdot 4 \frac{x^{n+2}}{n+2}\right]_{0}^{0.45} \\
\cos (\sqrt{x}) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(x^{1 / 2}\right)^{2 n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n} & =\left(\frac{4 x^{2}}{0!(2)}-\frac{4 x^{3}}{2!(3)}+\frac{4 x^{4}}{4!(4)}-\frac{4 x^{3}}{6!(5)}\right. \\
f(x)=4 x \cos (\sqrt{x}) & =4 x \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \cdot 4 x^{n+1} \\
S_{0}^{0.45} 4 x \cos (\sqrt{x}) d x & =\left(2 x^{2}-\frac{2 x^{3}}{3}+\frac{x^{4}}{24}-\frac{x^{5}}{900}\right) \\
\int_{0}^{0.45} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \cdot 4 x^{n+1} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \cdot 4\left(0.45 x_{0}^{n+1} d x \int_{0}^{0.45} 4 x \cos (\sqrt{x}) d x \approx 10.34593\right.
\end{array}
$$

133. Use the first 3 terms of the Macluarin series for $f(x)=\ln (1+x)$ to evaluate $\ln (1.56)$. Round to 5 decimal places.

$$
\begin{aligned}
& \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n} \\
& \quad N_{0}+e=1.56=1+0.56 \\
& \ln (1+0.56)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(0.56)^{n}=0.56-\frac{(0.56)^{2}}{2}+\frac{(0.56)^{3}}{3}
\end{aligned}
$$

0.46174

$$
\ln (1.56) \approx
$$

134. Use the first 4 terms of the Macluarin series for $f(x)=\sin (x)$ to evaluate $\sin (0.75)$. Round to 5 decimal places.

$$
\begin{aligned}
& \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
& \sin (0.75)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(0.75)^{2 n+1}}{(2 n+1)!}=\frac{0.75}{1!}-\frac{(0.75)^{3}}{3!}+\frac{(0.71)^{5}}{5!}-\frac{(0.75)^{7}}{7!}
\end{aligned}
$$

$$
\sin (0.75) \approx=
$$

135. Given $f(x, y)=3 x^{3} y^{2}-x^{2} y^{1 / 3}$, evaluate $f(3,-8)$.

136. Find the domain of

$$
f(x, y)=\frac{-5 x}{\sqrt{x+9 y+1}}
$$

$$
\text { Domain }=\{(x, y) \mid x+9 y+1>0\}
$$

137. Find the domain of

$$
f(x, y)=\frac{\sqrt{x+y-1}}{\ln (y-11)-9}
$$

$$
\begin{aligned}
& \sqrt{?} \rightarrow ? \geq 0 \\
& \sqrt{x+y-1} \rightarrow \begin{array}{c}
x+y-1 \geq 0 \\
x+y \geq 1
\end{array} \\
& \frac{1}{?} \rightarrow ? \neq 0 \\
& \ln (y-11)-9 \neq 0 \\
& \ln (y-11) \neq 9 \\
& y-11 \neq e^{9} \\
& y \neq e^{9}+11
\end{aligned}
$$

$$
\begin{aligned}
& \ln (?) \rightarrow 2>0 \\
& \quad \ln (y-11) \rightarrow y-11>0 \\
& y>11
\end{aligned}
$$

$$
\left\{(x, y) \mid x+y \geq 1, y>11, \quad y \neq 11+e^{9}\right\}
$$

138. Find the domain of

$$
f(x, y)=\frac{\ln \left(x^{2}-y+3\right)}{\sqrt{x-6}}
$$

$$
\begin{aligned}
& \ln (?) \rightarrow ?>0 \\
& \ln \left(x^{2}-y+3\right) \rightarrow x^{2}-y+3>0 \\
& x^{2}+3>y
\end{aligned}
$$

$$
\begin{array}{r}
\frac{1}{\sqrt{?}} \rightarrow ?>0 \\
\frac{1}{\sqrt{x-6}}+x-6>0 \\
x>6
\end{array}
$$

$$
\left\{(x, y) \mid x>6, x^{2}+3>y\right\}
$$

139. Describe the indicated level curves $f(x, y)=C$

$$
f(x, y)=\ln \left(x^{2}+y^{2}\right) C=\ln (36) \quad \ln \left(x^{2}+y^{2}\right)=\ln (36)
$$

(a) Parabola with vertices at $(0,0)$
(b) Circle with center at $(0, \ln (36))$ and radius 6

$$
\begin{aligned}
& x^{2}+y^{2}=36 \\
& x^{2}+y^{2}=6^{2}
\end{aligned}
$$

(c) Parabola with vertices at $(0, \ln (36))$
(d) Circle with center at $(0,0)$ and radius 6
(e) Increasing Logarithm Function
140. What do the level curves for the following function look like?

$$
f(x, y)=\ln \left(y-e^{5 x}\right)
$$

$$
\begin{gathered}
\ln \left(y-e^{5 x}\right)=c \\
y-e^{5 x}=e^{c} \\
y-e^{5 x}=c \\
y=e^{5 x}+c
\end{gathered}
$$

(a) Increasing exponential functions
(b) Rational Functions with x -axis symmetry
(c) Natural logarithm functions
(d) Decreasing exponential functions
(e) Rational Functions with y-axis symmetry
141. What do the level curves for the following function look like?

$$
f(x, y)=\sqrt{y+4 x^{2}}
$$

(a) Lines
(b) Parabolas
(c) Circles
(d) Point at the origin
(e) Ellipses
(f) Hyperbolas
142. What do the level curves for the following function look like?

$$
f(x, y)=\cos \left(y+4 x^{2}\right)
$$

(a) Lines
(b) Parabolas
(c) Circles
(d) Point at the origin
(e) Ellipses
(f) Hyperbolas

$$
\begin{aligned}
& \cos \left(y+4 x^{2}\right)=c \\
& y+4 x^{2}=\cos ^{-1}(c) \\
& y+4 x^{2}=c \\
& y=-4 x^{2}+c
\end{aligned}
$$

143. For the following function $f(x, y)$, evaluate $f_{y}(-2,-3)$.

$$
\begin{aligned}
f_{y}(x, y) & =\frac{d}{d y}\left(8 x^{4} y^{5}+3 x^{3}-12 y^{2}\right) \\
& =8 x^{4} \frac{d}{d y}\left(y^{5}\right)+3 x^{3} \frac{l}{d y}(1)-\frac{d}{d y}\left(12 y^{2}\right) \\
& =\left(8 x^{4}\right)\left(5 y^{4}\right)+\left(3 x^{3}\right)(0)-24 y \\
& =40 x^{4} y^{4}-24 y \\
f_{y}(-2,-3) & =40(-2)^{4}(-3)^{4}-24(-3) \\
& =51912
\end{aligned} \quad f_{y}(-2,-3)=51912
$$

144. Compute $f_{x}(6,5)$ when

$$
\begin{aligned}
f_{x}(x, y) & =\frac{d}{d x}\left(\frac{(6 x-6 y)^{2}}{\sqrt{y^{2}-1}}\right) \\
& =\frac{1}{\sqrt{y^{2}-1}} \frac{d}{d x}\left((6 x-6 y)=\frac{(6 x-6 y)^{2}}{\sqrt{y^{2}-1}}\right) \\
& =\frac{1}{\sqrt{y^{2}-1}} \cdot 2(6 x-6 y) \frac{d}{d x}(6 x+6 y) \\
& =\frac{1}{\sqrt{y^{2}-1}} \cdot 2(6 x-6 y) \cdot 6 \\
& =\frac{72 x-72 y}{\sqrt{y^{2}-1}} \quad f_{x}(6,5)=\frac{72 / \sqrt{24}}{}
\end{aligned}
$$

145. Find the first order partial derivatives of

$$
\begin{aligned}
& f(x, y)=3 x^{2} \cdot \frac{y^{3}}{(y-1)^{2}} \quad f(x, y)=\frac{3 x^{2} y^{3}}{(y-1)^{2}} \\
& f_{x}(x, y)=\frac{d}{d x}\left(3 x^{2} \cdot \frac{y^{3}}{(y-1)^{2}}\right)=\frac{y^{3}}{(y-1)^{2}} \cdot \frac{d}{d x}\left(3 x^{2}\right)=\frac{y^{3}}{(y-1)^{2}} \cdot 6 x \\
& f_{y}(x, y)=\frac{d}{d y}\left(3 x^{2} \cdot \frac{y^{3}}{(y-1)^{2}}\right)=3 x^{2} \frac{d}{d y}\left(\frac{y^{3}}{(y-1)^{2}}\right)=3 x^{2}\left(\frac{3 y^{2}(y-1)^{2}-y^{3} \cdot 2(y-1)}{(y-1)^{4}}\right) \\
&=3 x^{2}\left(\frac{(y-1)\left[3 y^{2}(y-1)-2 y^{3}\right]}{(y-1)^{43}}\right)=\frac{3 x^{2}\left(3 y^{3}-3 y^{2}-2 y^{3}\right)}{(y-1)^{3}} \\
&=\frac{3 x^{2}\left(y^{3}-3 y^{2}\right)}{(y-1)^{3}} \\
& f_{x}(x, y)=\frac{6 x y^{3} /(y-1)^{2}}{3 x^{2}\left(y^{3}-3 y^{2}\right)} \\
& f_{y}(x, y)=\frac{3-1)^{3}}{}
\end{aligned}
$$

146. Find the first order partial derivatives of

$$
\begin{aligned}
f_{x}(x, y) & =\frac{d}{d x}(x \sin (x y))=\frac{d}{d x}(x) \sin (x y)+x \frac{d}{d x}(\sin (x y)) \\
& =\sin (x y)+x \cos (x y) \frac{d}{d x}(x y) \\
& =\sin (x y)+x \cdot y \cos (x y) \\
f_{y}(x, y) & =\frac{d}{d y}(x \sin (x y))=x \frac{d}{d y}(\sin (x y)) \\
& =x \cos (x y) \frac{d}{d y}(x y) \quad \\
& =x^{2} \cos (x y) \quad \begin{array}{l}
f_{x}(x, y)= \\
\sin (x y)+x y \cos (x y) \\
x^{2} \cos (x, y)=
\end{array}
\end{aligned}
$$

147. Find the first order partial derivatives of $f(x, y)=(x y-1)^{2}$

$$
\begin{aligned}
f_{x}(x, y)=\frac{d}{d x}\left((x y-1)^{2}\right) & =2(x y-1) \frac{d}{d x}(x y-1) \\
& =2(x y-1) y \\
& =2 x y^{2}-2 y
\end{aligned}
$$

$$
\begin{aligned}
& f_{y}(x, y)=\frac{d}{d y}\left((x y-1)^{2}\right)=2(x y-1) \frac{d}{d y}(x y-1) \\
&=2(x y-1) x \\
&=2 x^{2} y-2 x \\
& f_{x}(x, y)= 2 x y^{2}-2 y \\
& f_{y}(x, y)= 2 x^{2} y-2 x \\
& \hline
\end{aligned}
$$

148. Find the first order partial derivatives of $f(x, y)=x e^{x^{2}+x y+y^{2}}$

$$
\begin{aligned}
f_{x}(x, y) & =\frac{d}{d x}(x) e^{x^{2}+x y+y^{2}}+x \frac{d}{d x}\left(e^{x^{2}+x y+y^{2}}\right) \\
& =e^{x^{2}+x y+y^{2}}+x\left(e^{x^{2}+x y+y^{2}}\right)(2 x+y) \\
& =\left(1+2 x^{2}+x y\right) e^{x^{2}+x y+y^{2}} \\
f_{y}(x, y) & =x \frac{d}{d y}\left(e^{x^{2}+x y+y^{2}}\right)=x\left(e^{x^{2}+x y+y^{2}}\right)(x+2 y) \\
& =\left(x^{2}+2 x y\right) e^{x^{2}+x y+y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& f_{x}(x, y)=\begin{array}{l}
\left(1+2 x^{2}+x y\right) e^{x^{2}+x y+y^{2}} \\
f_{y}(x, y)= \\
\left(x^{2}+2 x y\right) e^{x^{2}+x y+y^{2}} \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

149. Find the first order partial derivatives of $f(x, y)=-7 \tan \left(x^{7} y^{8}\right)$

$$
\begin{aligned}
f_{x}(x, y) & =-7 \frac{d}{d x}\left(\tan \left(x^{7} y^{8}\right)\right)=-7 \sec ^{2}\left(x^{7} y^{8}\right) \frac{d}{d x}\left(x^{7} y^{8}\right) \\
& =-7 \cdot 7 x^{6} y^{8} \sec ^{2}\left(x^{7} y^{8}\right)=-49 x^{6} y^{8} \sec ^{2}\left(x^{7} y^{8}\right) \\
f_{y}(x, y) & =-7 \frac{d}{d y}\left(\tan \left(x^{7} y^{8}\right)\right)=-7 \sec ^{2}\left(x^{7} y^{8}\right) \frac{d}{d y}\left(x^{7} y^{8}\right) \\
& =-7 \cdot 8 x^{7} y^{7} \sec ^{2}\left(x^{7} y^{8}\right) \quad \\
& =-56 x^{7} y^{7} \sec ^{2}\left(x^{7} y^{8}\right) \quad-49 x^{6} y^{8} \sec ^{2}\left(x^{7} y^{8}\right) \\
f_{y}(x, y)= & -56 x^{7} y^{7} \sec ^{2}\left(x^{7} y^{8}\right)
\end{aligned}
$$

150. Find the first order partial derivatives of $f(x, y)=y \cos \left(x^{2} y\right)$

$$
\begin{aligned}
f_{x}(x, y) & =y \frac{d}{d x}\left(\cos \left(x^{2} y\right)\right)=y\left(-\sin \left(x^{2} y\right)\right) \frac{d}{d x}\left(x^{2} y\right)=-y \sin \left(x^{2} y\right)[2 x y] \\
& =-2 x y^{2} \sin \left(x^{2} y\right) \\
f_{y}(x, y) & =\frac{d}{d y}(y) \cos \left(x^{2} y\right)+y \frac{d}{d y}\left(\cos \left(x^{2} y\right)\right) \\
& =\cos \left(x^{2} y\right)+y\left(-\sin \left(x^{2} y\right)\right) \frac{d}{d y}\left(x^{2} y\right) \\
& =\cos \left(x^{2} y\right)-y \sin \left(x^{2} y\right)\left[x^{2}\right] \\
& =\cos \left(x^{2} y\right)-x^{2} y \sin \left(x^{2} y\right)
\end{aligned}
$$

$$
f_{x}(x, y)=\frac{-2 x y^{2} \sin \left(x^{2} y\right)}{\cos \left(x^{2} y\right)-x^{2} y \sin \left(x^{2} y\right)}
$$

151. Find the first order partial derivatives of $f(x, y)=x e^{x y}$

$$
\begin{aligned}
& f_{x}=\frac{\partial}{\partial x}\left(x e^{x y}\right)=\frac{\partial}{\partial x}(x) e^{x y}+x \frac{\partial}{\partial x}\left(e^{x y}\right) \\
&=e^{x y}+x e^{x y} \frac{\partial}{\partial x}(x y) \\
&=e^{x y}+x e^{x y}(y) \\
&=e^{x y}(1+x y) \\
& \begin{aligned}
f_{y}=\frac{\partial}{\partial y}\left(x e^{x y}\right) & =x \frac{\partial}{\partial y}\left(e^{x y}\right) \\
& =x e^{x y} \frac{\partial}{\partial y}(x y) \\
& =x e^{x y} \cdot x \quad f_{\left.f_{x}(x, y)\right)}=e^{x y}(1+x y) \\
& =x^{2} e^{x y} \quad x^{2} e^{x y}
\end{aligned}
\end{aligned}
$$

152. Given the function $f(x, y)=x^{3} y^{2}-3 x+5 y-5 x^{2} y^{3}$, compute $f_{x x}(x, y)$

$$
\begin{aligned}
f_{x} & =\frac{\partial}{\partial x}\left(x^{3} y^{2}-3 x+5 y-5 x^{2} y^{3}\right) \\
& =3 x^{2} y^{2}-3+0-10 x y^{3} \\
f_{x x} & =\frac{\partial}{\partial x}\left(3 x^{2} y^{2}-3-10 x y^{3}\right) \\
& =6 x y^{2}+0-10 y^{3}
\end{aligned}
$$

$$
f(x, x, y)=6 x y^{2}-10 y^{3}
$$

153. Given the function $f(x, y)=4 x^{5} \tan (3 y)$, compute $f_{x y}(2, \pi / 3)$

$$
\begin{aligned}
& f_{x}(x, y)=\frac{d}{d x}\left(4 x^{5} \tan (3 y)\right)=\tan (3 y) \cdot \frac{d}{d x}\left(4 x^{5}\right) \\
&=\tan (3 y) \cdot\left(20 x^{4}\right) \\
& \begin{aligned}
f_{x y}(x, y)=\frac{d}{d y}\left(f_{x}(x, y)\right)=\frac{d}{d y}\left(\tan (3 y) \cdot\left(20 x^{4}\right)\right) & =20 x^{4} \frac{d}{d y}(\tan (3 y)) \\
& =204^{4} \cdot \sec ^{2}(3 y) \cdot 3 \\
& =60 x^{4} \sec ^{2}(3 y y) \\
f_{x y}(2, \pi / 3) & =60(2)^{4} \sec ^{2}(3 \pi / 3) \\
& =60(16) \sec ^{2}(\pi) \\
& =960
\end{aligned} \\
&
\end{aligned}
$$

154. Given the function $f(x, y)=x^{3} \sin (y)$, compute $f_{x y}(2,0)$

$$
\left.\begin{array}{l}
f_{x}=\frac{\partial}{\partial x}\left(x^{3} \sin (y)\right)=\sin (y) \frac{\partial}{\partial x}\left(x^{3}\right)=3 x^{2} \sin (y) \\
\begin{array}{rl}
f_{x y} & =\frac{\partial}{\partial y}\left(f_{x}\right)
\end{array}=\frac{\partial}{\partial y}\left(3 x^{2} \sin (y)\right)=3 x^{2} \frac{\partial}{\partial y}(\sin (y)) \\
\\
=3 x^{2} \cos (y)
\end{array}\right\} . \begin{aligned}
& f_{x y}(2,0)=3(2)^{2} \cos (0)=12
\end{aligned}
$$

155. Find the second order partial derivatives of

$$
\begin{aligned}
f(x, y) & =\left(x^{2} \ln (7 x)\right) y \\
f_{x}(x, y) & =\frac{d}{d x}\left(\left(x^{2} \ln (7 x)\right) \cdot y\right)=y \frac{d}{d x}\left(x^{2} \ln (7 x)\right)=x^{2} y \ln (7 x) \\
& =y\left(2 x \ln (7 x)+x^{2} \frac{1}{7 x} \cdot 7\right)=y(2 x \ln (7 x)+x) \\
f_{x x}(x, y) & =\frac{d}{d x}(y(2 x \ln (7 x)+x))=y \frac{d}{d x}(2 x \ln (7 x)+x) \\
& =y\left(2 \ln (7 x)+2 x \cdot \frac{1}{7 x} \cdot 7+1\right)=y(2 \ln (7 x)+2+1) \\
& =y(2 \ln (7 x)+3)
\end{aligned}
$$

$$
\begin{aligned}
f_{x y}(x, y) & =\frac{d}{d y}(y(2 x \ln (7 x)+x))=(2 x \ln (7 x)+x) \frac{d}{d y}(y) \\
& =2 x \ln (7 x)+x \\
f_{y}(x, y) & =\frac{d}{d y}\left(\left(x^{2} \ln (7 x)\right) \cdot y\right)=\left(x^{2} \ln (7 x)\right) \frac{d}{d y}(y)=x^{2} \ln (7 x) \\
f_{y y}(x, y) & =\frac{d}{d y}\left(x^{2} \ln (7 x)\right)=0
\end{aligned}
$$

156. A function $f(x, y)$ has 2 critical points. The partial derivatives of $f(x, y)$ are

$$
f_{x}(x, y)=8 x-16 y \quad \text { and } \quad f_{y}(x, y)=8 y^{2}-16 x
$$

One of the critical points is $(0,0)$. Find the second critical point of $f(x, y)$.
$\left\{\begin{array}{l}8 x-16 y=0 \quad \text { (1) } \\ 3 y^{2}-16 x=0 \quad \text { (2) }\end{array}\right.$
Solve © 10 for x.

$$
\begin{aligned}
8 x & =16 y \\
x & =2 y
\end{aligned}
$$

$$
\begin{aligned}
& \text { Plug } x=2 y \text { into (2). } \\
& 8 y^{2}-16(2 y)=0 \\
& 8 y^{2}-32 y=0 \\
& 8 y(y-4)=0 \\
& y=0,4
\end{aligned}
$$

Plug $y=0,4$
into $x=2 y$.

$$
\begin{aligned}
& y=0 \rightarrow x=x \rightarrow(0,4) \\
& y=4 \rightarrow x=8 \rightarrow(8,4)
\end{aligned}
$$

157. Find the discriminant of

$$
f(x, y)=e^{x} \sin (y)
$$

Simplify your answer. Note: $\sin ^{2}(y)+\cos ^{2}(y)=1$.

$$
\begin{aligned}
& f_{x}(x, y)=e^{x} \sin (y) \\
& f_{x x}(x, y)=e^{x} \sin (y) \\
& f_{x y}(x, y)=e^{x} \cos (y) \\
& f_{y}(x, y)=e^{x} \cos (y)
\end{aligned}
$$

$$
D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}
$$

$$
=\left(e^{x} \sin (y)\right)\left(-e^{x} \sin (y)\right)-\left(e^{x} \cos (y)\right)^{2}
$$

$$
=-e^{2 x} \sin ^{2}(y)-e^{2 x} \cos ^{2}(y)
$$

$$
=-e^{2 x}\left(\sin ^{2}(y)+\cos ^{2}(y)\right)
$$

$$
=-e^{2 x}(1)
$$

$$
D(x, y)=-
$$

158. Using the information in the table below, classify the critical points for the function $g(x, y)$.

(a, b)	$g_{x x}(a, b)$	$g_{y y}(a, b)$	$g_{x y}(a, b)$
$(4,5)$	0	4	-2
$(5,-10)$	5	-10	6
$(10,10)$	-4	-6	-4
$(7,9)$	5	7	4
$(4,8)$	2	2	2

$$
\begin{aligned}
& D(4,5)=(0)(4)-(-2)^{2}=-4<0 \\
& \rightarrow \text { sudd le pt } \\
& D(5,-10)=(5)(-10)-6^{2}=-86<0 \\
& \rightarrow \text { saddle pt }
\end{aligned}
$$

$$
D(7,9)=(5)(7)-(4)^{2}=19>0
$$

\rightarrow relative
$g_{x x}=5_{z}>0 \rightarrow$ min

$$
D(4, s)=(2)(2)-2^{2}=0_{H} \text { I n conclusive }
$$

159. Given the information below, which critical point $(\mathrm{s})(a, b)$ would be classified as a relative maximum?

(a, b)	$f_{x x}(a, b)$	$f_{y y}(a, b)$	$f_{x y}(a, b)$
$(7,8)$	-5	-5	10
$(-8,-\mathbf{1})$	-4	-7	-2
$(1,7)$	-10	-1	6

$D(1,7)=(-10)(-1)-6^{2}<0 \rightarrow$ Saddle pt

Answer:

160. Classify the critical points of the function $f(x, y)$ given the partial derivatives:

$$
f_{x}(x, y)=x-y \quad f_{y}(x, y)=y^{3}-x
$$

$$
\begin{array}{rc}
f x=0 & f y=0 \\
x-y=0 & y^{3}-x=0 \\
x=y & y^{3}=x \\
x=y & y=y^{3} \\
y^{3}=x & \Rightarrow \begin{array}{lc}
& y-y^{3}=0 \\
& y\left(1-y^{2}\right)=0 \\
\text { find } & y=0, \pm 1
\end{array}
\end{array}
$$

(a) Two saddle points and one local minimum
(b) Two saddle points and one local maximum
(c) One saddle point, one local maximum, and one local minimum
(d) Three saddle points
(e) Two local minimums and one saddle point

$$
f_{x}=x-y \quad f_{y}=y^{3}-x \quad \text { Note we don't need to find } \quad y\left(1-y^{2}\right)=1
$$

$$
f_{x x}=1 \quad f_{y y}=3 y^{2} \text { the } x \text {-values b/c D which }
$$

$$
f_{x y}=-1 \quad \text { we found on the left only has }
$$

$$
\begin{aligned}
& \text { ty }=-1 \\
& D=f x x y y-(f x y)^{2} \quad y^{\prime} s \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =+x+x+y y \\
& =(1)\left(3 y^{2}\right)-(-1)^{2}
\end{aligned}
$$

$$
=3 y^{2}-1 \longleftrightarrow
$$

$$
\text { When } y=0, D=-1<0 \rightarrow \text { saddle }
$$

When $y=-1, D=2>0 \rightarrow$ rel extrema \} ~ C h e c k ~ $f_{x x}=1>0$ when $y=+1, D=2>0 \rightarrow$ rel extrema) \rightarrow rel mons

$$
\bigodot y= \pm 1
$$

161. The critical points for a function $f(x, y)$ are $(0,0)$ and $(8,4)$. Given that the partial derivatives of $f(x, y)$ are

$$
f_{x}(x, y)=3 x-6 y \quad f_{y}(x, y)=3 y^{2}-6 x
$$

Classify each critical point as a maximum, minimum, or saddle point.

$D(0,0)<0 \rightarrow$ saddle pt
$(0,0)$ is \square saddle pt $D(8,4)>0$ and $f_{x x}(8,4)>0_{(8,4) ; s}$ \qquad rel min bel min<
162. Find all local maximum and minimum points of

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
f_{x}=8 x-y-46=0 \quad 0 \\
f_{y}=-x+16 y-26=00
\end{array} \left\lvert\, \begin{array}{l}
f(x, y)=4 x^{2}-x y+8 y^{2}-46 x-26 y+11 \\
f_{x y}=-1 \\
\text { Multiply (2) by 8. Then add }
\end{array}\right.\right. \\
f_{y y}=16
\end{array}\right\} \rightarrow \begin{array}{r}
D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2} \\
=8(16)-(-1)^{2}>0
\end{array}
$$

$$
\begin{array}{r}
8 x-y+46=0 \\
-8 x+128 y-203=0 \\
\hline 127 y-162=0
\end{array}
$$

and $f_{x x}=8>0$ For all pts. So we

$$
y=\frac{162}{127}
$$ have only rel min

Plug $y=\frac{162}{127}$ into (1)

$$
x=\frac{1501}{254}
$$

163. Fleet feet stores two most sold running shoes brands are Aesics and Brookes. The total venue from selling x pairs of Aesics and y pairs of Brookes is given by

$$
R(x, y)=-10 x^{2}-16 y^{2}-4 x y+84+204 y
$$

where x and y are in thousands of units. Determine the number of Brookes shoes to be sold to maximize the revenue.
First find the critical pts.

$$
\left\{\begin{array}{l}
R_{x}=-20 x-4 y=0 \\
R_{y}=-32 y-4 x+204=0
\end{array}\right.
$$

Divide (1) and (2) by -4 .

$$
\begin{align*}
& \left\{\begin{array}{l}
5 x+y=0 \\
x+8 y-51=0
\end{array}\right. \\
\Rightarrow & \left\{\begin{array}{r}
5 x+y=0 \\
x+8 y=51
\end{array}\right.
\end{align*}
$$

Multiply (2) by 5 .

$$
\Rightarrow\left\{\begin{array}{l}
5 x+y=0 \tag{1}\\
5 x+40 y=255
\end{array}\right.
$$

Subtract (1) and (2)

$$
\begin{aligned}
-39 y & =-255 \\
y & \approx 6.5 \\
& \Rightarrow y=7
\end{aligned}
$$

The \# of Brookes shoes sold is \square
164. Find the point (s) (x, y) where the function $f(x, y)=3 x^{2}+4 x y+6 x-15$ attains maximal value, subject to the constraint $x+y=10$.

$$
\begin{aligned}
& f=3 x^{2}+4 x y+6 x-15 \quad g-x+y=10 \\
& f_{x}=6 x+4 y+6 \\
& f_{y}=4 x \\
& \text { System }\left\{\begin{array}{l}
6 x+4 y+6=\lambda \text { (1) } \\
4 x=\lambda \\
x+y=10
\end{array}\right. \\
& \operatorname{set}(1)=(\alpha) \\
& 6 x+4 y+6=4 x \\
& 2 x+4 y+6=0 \\
& 2 x=-4 y-6 \\
& x=-2 y-3
\end{aligned}
$$

Plug $x=-2 y-3$ into (3)

$$
x+y=10
$$

$$
-2 y-3+y=10
$$

$$
-y-3=10
$$

$$
-y=13
$$

$$
y=-13
$$

Plug $y=-13$ into $x=-2 y-3$.

$$
\begin{aligned}
x & =-2(-13)-3 \\
& =26-3 \\
& =23
\end{aligned}
$$

$(x, y)=$ \qquad
165. Find the maximum of the function using LaGrange Multipliers of the function $f(x, y)=x^{2}+2 y^{2}$ subject to the constraint $x^{2}+y^{2}=1$.

$$
\begin{array}{l|l}
f=x^{2}+2 y^{2} & g=x^{2}+y^{2}=1 \\
f_{x}=2 x & g x=2 x \\
f_{y}=4 y & g y=2 y \\
\text { System } & (2 x=2 x \lambda
\end{array}
$$

Solve (1).

$$
\begin{aligned}
& 2 x=2 x \lambda \\
& 2 x-2 x \lambda=0 \\
& 2 x(1-\lambda)=0 \\
& x=0, \lambda=1
\end{aligned}
$$

Plug $x=0$ into (3)

$$
\begin{array}{r}
\Delta^{2}+y^{2}=1 \\
y= \pm 1
\end{array}
$$

Pts: $(0,1),(0,-1)$
Plug $\lambda=1$ into (1)

$$
4 y=2 y
$$

only true when $y=0$
Plug $y=0$ into (3)

$$
\begin{gather*}
x^{2}+0^{2}=1 \\
x= \pm 1 \tag{2}\\
\text { Pts: }(1,0),(-1,0) \tag{3}
\end{gather*}
$$

Now plug the pts into $f(x, y)=x^{2}+2 y^{2}$

166. Find the minimum value of the function $f(x, y)=2 x^{2} y-3 y^{2}$ subject to the constraint $x^{2}+2 y=1$.

Plug $\lambda=2 y$ into (2)

$$
\begin{aligned}
& \frac{\text { Test for Min }}{f(0,1 / 2)=-3 / 4} \\
& f\left(\pm \sqrt{\frac{5}{7}}, \frac{1}{7}\right)=\frac{1}{7}
\end{aligned}
$$

$$
\begin{align*}
& f=2 x^{2} y-3 y^{2} \quad g=x^{2}+2 y=1 \\
& f x=4 x y \\
& f y=2 x^{2}-6 y \quad g x=2 \tag{3}\\
& \text { system }\left\{\begin{array}{l}
4 x y=2 x \lambda \\
2 x^{2}-6 y=2 \lambda \text { (2) } \\
x^{2}+2 y=1
\end{array}\right. \tag{o}
\end{align*}
$$

Solve (1)

$$
\begin{align*}
& 4 x y-2 x \lambda=0 \\
& 2 x(2 y-\lambda)=0 \\
& x=0, \lambda=2 y \tag{3}
\end{align*}
$$

Plug $x=0$ into

$$
\begin{array}{r}
0^{0}+2 y=1 \\
y=1 / 2
\end{array}
$$

Pts: $(0,1 / 2)$

$$
2 x^{2}-6 y=2(2 y)
$$

$$
2 x^{2}-6 y=2(2 y)
$$

$$
2 x^{2}-6 y=4 y
$$

$$
2 x^{2}=10 y
$$

$$
\begin{gathered}
2 x^{2}=10 y \\
x^{2}=5 y
\end{gathered}
$$

$$
x^{2}=5 y^{\prime}
$$

Plug $x^{2}=5 y$ into (3)

$$
\begin{gathered}
5 y+2 y=1 \\
7 y=1 \\
y=1 / 7
\end{gathered}
$$

|
)
168. Find the maximum value of the function $f(x, y)=8 x-11 y^{2}$ subject to the constraint $x^{2}+11 y^{2}=25$.

$$
\begin{aligned}
& f_{x}=8 \quad g_{x}=2 x \quad \text { Plus } \lambda=-1 \text { int. (1) } \\
& f_{y}=-22 y \\
& 9 y=22 y \\
& s=-2 x \\
& f(5,6)=40 \rightarrow \max \\
& \left\{\begin{array}{l}
8=2 x \lambda \\
-22 y=22 y \lambda(1) \\
x^{2}+11 y^{2}=25 \text { (3) }
\end{array}\right. \\
& \text { Solve (1) } \\
& -22 y=22 y \lambda \\
& 0=22 y \lambda+22 y \\
& 0=22 y(\lambda+1) \text { (critical P4: }\left(-4 \sqrt{\frac{9}{11}}\right) \text {, } \\
& y=0, \lambda=-1 \\
& \text { Plug } y=0 \text { into (3) } \\
& \left(-4,-\sqrt{\frac{9}{11}}\right) \\
& x=-4 \\
& f(-5,0)=-40 \\
& \text { Plug } x=-4 \text { into (3) } \\
& f\left(-4, \sqrt{\frac{9}{11}}\right)=-49 \\
& 16+11 y^{2}=25 \\
& 11 y^{2}-9 \\
& f\left(-4,-\sqrt{\frac{9}{11}}\right)=-49 \\
& y^{2}=\frac{9}{11} \\
& y= \pm \sqrt{\frac{9}{11}} \\
& x^{2}+0=25 \\
& \text { Max value is } \quad 40 \\
& x= \pm 5
\end{aligned}
$$

 and x and y are the percentages of cocoa and sugar respectively. The percentage of cocoa and sugar are constrained to $2 x+y=75$. What is the weight, in ounces, of the largest chocolate bar that can

$$
\begin{aligned}
& \text { be produced? Round to } 2 \text { decimal places. } \\
& W(x, y)=x y / 106 \quad g(x, y)=2 x+y=75 \quad \text { Plug } y=2 x \text { into (2) } \\
& w x=y / 100 \\
& \mathrm{~g}_{\mathrm{x}}=2 \\
& W y=x / 100 \\
& 9 y=1 \\
& \left\{\begin{array}{l}
\frac{y}{100}=2 \lambda \\
\frac{x}{100}=\lambda \\
2 x+y=75
\end{array}\right. \\
& \text { Plug © © int. } 10 \text {. } \\
& \frac{y}{100}=\frac{2 x}{108} \\
& y=2 x
\end{aligned}
$$

170. We are baking a tasty treat where customer satisfaction is given by $S(x, y)=6 x^{3 / 2} y$. Here, x and y are the amount of sugar and spice respectively. If the sugar and spice we use must satisfy $9 x+y=4$, what is the maximum customer satisfaction we can achieve? (Note: the function is defined only for $x \geq 0$ and $y \geq 0$.) Round your answer to 2 decimal places.

$$
\begin{aligned}
& S=6 x^{3 / 2} y \\
& S_{x}=9 x^{1 / 2} y \\
& S y=6 x^{3 / 2} \\
& \text { System } \\
& \begin{cases}9 x^{1 / 2} y=9 \lambda \\
6 x^{3 / 2} & 9 \\
9 x^{2}+y^{2}=4 & \text { (3) }\end{cases}
\end{aligned}
$$

Plug (2) in (1)

$$
\begin{gathered}
9 x^{1 / 2} y=9\left(6 x^{3 / 2}\right) \\
x^{1 / 2} y=6 x^{3 / 2} \\
x^{1 / 2} y-6 x^{3 / 2}=0 \\
x^{1 / 2}(y-6 x)=0 \\
x=0, y=6 x
\end{gathered}
$$

Plug $x=0$ int.

$$
\begin{equation*}
0+y=4 \tag{3}
\end{equation*}
$$

Pt: $(0,4)$
Plug $y=6 x$ into

$$
\begin{gathered}
9 x+6 x=4 \\
15 x=4 \\
x=\frac{4}{15} \\
\text { Plug } x=\frac{4}{15} \text { into } y=6 x \\
y=\frac{8}{5}
\end{gathered}
$$

Test for max
$S(0,4)=0$
$S\left(\frac{4}{15}, \frac{8}{5}\right) \approx 1.32$

$\quad \begin{aligned} & \text { max }\end{aligned}$

$$
\text { Pt }\left(\frac{4}{15}, \frac{8}{5}\right)
$$

171. A customer has $\$ 280$ to spend on two items, Item A , which costs $\$ 2$ per unit, and Item B, which costs $\$ 5$ per unit. If the enjoyment of each item by the customer is given by $f(A, B)=100 A B^{3}$, how many of each unit should be purchase to maximize the enjoyment of the customer?

$F=100 A B^{3}$
$g=2 A+5 B=280$

$$
f_{A}=100 B^{3}
$$

$$
f_{B}=300 A B^{2}
$$

$$
\left\{\begin{array}{l}
100 B^{3}=2 \lambda \\
300 A B^{2}=5 \lambda \\
2 A+5 B=280
\end{array}\right.
$$

Simplify (1) and (2) $\left\{\begin{array}{l}5 D B^{3}=\lambda \\ 6 D A B^{2}=\lambda \\ 2 A+5 B=280\end{array}\right.$

$$
\left|\begin{array}{c}
\text { Set }(\mathbb{C}=3 \\
50 B^{3}=60 A B^{2} \\
50 B^{3}-60 A B^{2}=0 \\
10 B^{2}(5 B-6 A)=0 \\
B=0, B=\frac{6 A}{5} \\
P \operatorname{lag} B=0 \text { int. }(B) \\
2 A+0=280 \\
A=140
\end{array}\right|
$$

172. Evaluate the following double integral.

$$
\begin{aligned}
& \int_{0}^{2} \int_{0}^{3}(x+y) d y d x d x \\
= & \left.\int_{0}^{2}\left(x y+\frac{y^{2}}{2}\right)\right]_{0}^{3} d x \\
= & \int_{0}^{2}\left(3 x+\frac{9}{2}\right) d x \\
= & \left.\left(\frac{3 x^{2}}{2}+\frac{9}{2} x\right)\right]_{0}^{2} \\
= & 15
\end{aligned}
$$

$$
\int_{0}^{2} \int_{0}^{3}(x+y) d y d x=
$$

173. Evaluate the double integral

$=\int_{0}^{\pi / 3} \sec ^{2}(x)(20) d x$
$=20 \int_{0}^{\pi / 3} \sec ^{2}(x) d x$
$=20 \tan x]_{0}^{\pi / 3} \quad \int_{0}^{\pi / 3} \int_{0}^{2} 25 y^{4} \sec ^{2}(x) d y d x=20 \sqrt{3}$
174. Evaluate the double integral

$$
=\int_{0}^{\pi / 2} \sin (y)\left(\int_{0}^{1} 12 x^{3} d x\right)^{J_{0}} d y
$$

$$
\left.=\int_{0}^{\pi / 2} \sin (y)\left(3 x^{4}\right]_{0}^{1}\right) d y
$$

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \int_{0}^{1} 12 x^{3} \sin (y) d x d y \\
& d x)^{d y} \\
& \begin{aligned}
d y & =-3 \cos \left(\frac{\pi}{2}\right)-(-3 \cos (0)) \\
& =0-(-3) \\
& =3
\end{aligned}
\end{aligned}
$$

$=\int_{0}^{\pi / 2} \sin (y)(3) d y$

$$
=3 \int_{0}^{\pi / 2} \sin (y) d y
$$

$$
=-3 \cos (y)]_{0}^{\pi / 2}
$$

$$
\int_{0}^{1} \int_{0}^{\pi / 2} 12 x^{3} \sin (y) d x d y=3
$$

175. Evaluate the double integral

$$
\begin{aligned}
& =\int_{x=0}^{x=\pi / 2}\left[\begin{array}{l}
y=1 \\
y=0
\end{array} 16 y^{3} \cos (x) d y\right] d x \\
& =\int_{x=0}^{x=\pi / 2} 16 \cos (x)\left[\begin{array}{l}
y=1 \\
y=0
\end{array} y^{3} d y\right] d x \\
& \left.=\int_{x=0}^{x=\pi / 2} 16 \cos (x)\left(\frac{y^{4}}{4}\right)\right]_{y=0}^{y=1} d x \\
& =\int_{x=0}^{x z \pi / 2} \frac{16}{4} \cos (x) d x \\
& =4 \sin (x)]_{x=0}^{x=\pi / 2} \quad \\
& =4
\end{aligned}
$$

176. Evaluate the double integral

$$
\begin{aligned}
& \int_{0}^{4} \int_{2}^{y}(y+x) d x d y \\
& \int_{y=0}^{y=4} \begin{array}{l}
x=4 \\
x=2
\end{array}(y+x) d x d y \\
& \left.=\int_{y=0}^{y=4}\left(\left(x y+\frac{x^{2}}{2}\right)\right]_{x=2}^{x=y}\right) d y \\
& =\left\{\begin{array}{l}
y=4 \\
y=0
\end{array}\left(y^{2}+\frac{y^{2}}{2}-(2 y+2)\right) d y\right. \\
& =\int_{y=0}^{y=4}\left(\frac{3}{2} y^{2}-2 y-2\right) d y \\
& \left.=\left(\frac{3}{2} \cdot \frac{y^{3}}{3}-\frac{2 y^{2}}{2}-2 y\right)\right] \begin{array}{l}
y=4 \\
y=0
\end{array} \\
& \left.=\left(\frac{y^{3}}{2}-y^{2}-2 y\right)\right] \begin{array}{l}
y=4 \\
y=0 \quad \int_{0}^{4} \int_{2}^{y}(y+x) d x d y=\square \\
\hline
\end{array} \\
& =8
\end{aligned}
$$

177. Evaluate the double integral

$$
\begin{aligned}
& \int_{1}^{2} \int_{1}^{x^{2}} \frac{x}{y^{2}} d y d x \\
& =\int_{x=1}^{x=2} \int_{y=1}^{y=x^{2}} x y^{-2} d y d x \\
& =\int_{x=1}^{x=2} x\left(\int_{y=1}^{y=x^{2}} y^{-2} d y\right) d x \\
& \left.=\int_{x=1}^{x=2} x\left(-y^{-1}\right]_{y=1}^{y=x^{2}}\right) d x \\
& =\left\{\begin{array}{l}
x=2 \\
x=1
\end{array} x\left(-\frac{1}{y}\right] \begin{array}{l}
y=x^{2} \\
y=1
\end{array}\right) d x \\
& =\int_{x=1}^{x=2} x\left(-\frac{1}{x^{2}}+1\right) d x \\
& =\int_{1}^{2}\left(x-\frac{1}{x}\right) d x \\
& \begin{array}{l}
=\left(\frac{x^{2}}{2}-\ln (x)\right]_{1}^{2} \\
=(2-\ln (2))-\left(\frac{1}{2}-0\right) \\
=3
\end{array} \\
& \begin{array}{l}
=\left(\frac{x^{2}}{2}-\ln (x)\right]_{1}^{2} \\
=(2-\ln (2))-\left(\frac{1}{2}-0\right) \\
=3-\ln (2)
\end{array} \\
& =\frac{3}{2}-\ln (2) \\
& \int_{i}^{2} \int_{i}^{2} \frac{x}{p^{x} x p d x}=\frac{3}{2}-\ln (z)
\end{aligned}
$$

178. Compute the following definite integral.

$$
\begin{aligned}
& =\int_{0}^{7} 36 x\left(\int_{1}^{x} d y\right) d x \\
& \left.=\int_{0}^{7} 36 x(y)\right]_{0}^{x} \int_{1}^{x} d x \\
& =\int_{0}^{7} 36 x d y d x \\
& =\int_{0}^{7}\left(36 x^{2}-36 x\right) d x \\
& \left.=\left(\frac{36 x^{3}}{3}-\frac{36 x^{2}}{2}\right)\right]_{0}^{7} \\
& \left.=\left(12 x^{3}-18 x^{2}\right)\right]_{0}^{7} \\
& =3234
\end{aligned}
$$

179. Find the bounds for the integral $\iint_{R} f(x, y) d A$ where R is a triangle with vertices $(0,0),(1,0)$, and $(1,2)$.

180. Switch the order of integration on the follow integral $\int_{0}^{6} \int_{x^{2}}^{36} f(x, y) d y d x$
The bounds tell me

So $0 \leq x \leq \sqrt{y}$ What does y range from?

$$
0 \leq y \leq 36
$$

$$
\int_{0}^{36} \int_{0}^{\sqrt{y}} f(x, y) d x d y
$$

181. Switch the order of integration on the follow integral

The bounds tell me $\int_{0}^{1} \int_{\text {mow }}^{10^{1}(x, y) d x d y}$

$$
\begin{aligned}
y=\frac{x}{10}-10 y & \leq x \leq 10 \\
0 & \leq y \leq 1
\end{aligned}
$$

182. Evaluate the double integral

$$
\int_{0}^{2} \int_{x}^{2} 4 e^{y^{2}} d y d x
$$

(Hint: Change the order of integration)
Bounds:

$$
x \leq y \leq 2
$$

$$
\left.=\int_{y=0}^{y=2} 4 e^{y^{2}}\left(\int_{x=0}^{x=y} d x\right) d y=2 e^{y^{2}}\right]^{y=2} y=0
$$

$$
\left.=\int_{y=0}^{y=2} 4 e^{y^{2}}(x]_{x=0}^{x=y}\right) d y
$$

$$
=\int_{y=0}^{y=2} 4 y e^{y^{2}} d y
$$

$$
\frac{u=y^{2}}{d u=2 y d y} \int 2 e^{u} d u
$$

So $0 \leq y \leq 2$

$$
\int_{0}^{2} \int_{x}^{2} 4 e^{y^{2}} d y d x=
$$

$$
0 \leq x \leq y
$$

$$
=2 e^{u}
$$

$\int_{0}^{2} \int_{x}^{2} 4 e^{y^{2}} d y d x$

$$
=\int_{y=0}^{y=2} \int_{x=0}^{x=y} 4 e^{y^{2}} d x d y
$$

\qquad
183. Evaluate the double integral

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(x^{3}\right) d x d y
$$

$$
\left.\begin{array}{l}
=\left\{\begin{array}{l}
x=1 \\
x=0
\end{array} \sin \left(x^{3}\right)\left(\begin{array}{l}
y=x^{2} \\
y=0
\end{array} d y\right) d x\right. \\
=\left\{\begin{array}{l}
x=1 \\
x=0 \\
x i n \\
x
\end{array} x^{3}\right)(y]_{y=0}^{y=x^{2}}
\end{array}\right) d x .
$$

$$
\text { Bounds: } 0 \leq y \leq 1
$$

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(x^{3}\right) d x d y
$$

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(x^{3}\right) d x d y=
$$

 $=\int_{x=0}^{x=1} \int_{y=0}^{y=x^{2}} \sin \left(x^{3}\right) d y d x$
184. Evaluate the double integral

$$
\int_{0}^{1} \int_{y}^{1} 2 e^{2} d x d y=\int_{y=0}^{y=1} \int_{x=y}^{x=1} 2 e^{x^{2}} d x d y
$$

(Hint: Change the order of integration)
Draw the region

$$
\begin{aligned}
& y=0, y=1 \\
& x=y, x=1
\end{aligned}
$$

So our new bounds are

$$
\begin{aligned}
& \left.=\int_{x=0}^{x=1} \begin{array}{l}
y=x \\
y=0
\end{array} 2 e^{x^{2}} d y\right] d x \\
& =\int_{x=0}^{x=1} 2 e^{x^{2}}\left[\begin{array}{ll}
y=x & d y \\
y=0
\end{array}\right] d x \\
& \left.=\int_{x=0}^{x=1} 2 e^{x^{2}}(y)\right]_{y=0}^{y=x} d x \\
& =\int_{x=0}^{x=1} 2 e^{x^{2}} \cdot x d x \\
& \frac{u=x^{2}}{d u=2 x d x} \int \mathscr{D} e^{u} x \frac{d u}{2 x}=\int e^{u}=e^{u} \\
& \left.=e^{x^{2}}\right]_{x=0}^{x=1} \\
& \frac{d u}{2 x}=d x \\
& \int_{0}^{1} \int_{v}^{1} \frac{\downarrow}{2 e^{2} d x d y}=e-1
\end{aligned}
$$

