Lesson 1 Area Between Two

Curves—F

Recall from Calculus T +that the Lelin, integre| heg
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In this lesson, we want te arca BETWEEN R curves,

Consider the araphs of £ and %, as shown bclow and
Sty we went to caleulak e ‘area bounded bv the

Yo curves between x20 and x=b,
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I we calcula#e the area. under ecch curve Separa=:

H;[v we find the blue and red areas in the Fwe

omaps below , r‘eslocchvelv
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Leoing ot Pwse araphs we can sce The qraph on Fhe right

s what We dontwand. So if we Sublract the red  F3

aree. from the blue area, we 8(34 He area between fug

Two CIATVES, (e Purplﬂ C’Lr{ia.
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Using integrals ) we have , |
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In this lesson, when finding the area bed ween dwo

curves on an interval [a)b]
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With all of these problems, you want to draw The graph

correspondina w;H, ﬂu. Dr,vobllcm. LE 4/0% need a rttf’fté‘her

on 8r‘;;'ohinjd FunCHonsl, refer +o A|36bm, Review 'oo.si'f—OQ
online. |

Examva]f’ 1 Find the arce g? He region bounded b{y
”,szz/ ;!/:X +L(/ dl-c-’-_xs3

Eirst defermine whose the top and bottom function, You

can do this most Hmes vic. & 3(“&!010:- Nodt iy doeg not

need +o be perfect, ,
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E)(Olm ]6 2 ]—‘”d H’L@ arto bounaﬂf’d by ‘f"h_g CUrve.s

® Miz=X ) and v‘-’-é><+\0/anoi v~6’ux:s,
A&aln let’s determing +he Jrog) and boHom functions .
[ el Pased on thy araph, we have
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But what )5 b? =
In this guestion its e point where boHa lings m)ersceol
L =x = =6x40
+ox  +6X
- “HBx =10
® X=X = b=
Which aives us
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Example 3. Find the area bound.ed bv e curves

i (x-10)% ,aneﬂ vz > 3y’

Again led’s determing 71[?/16 +op end. bottom funetions.
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But what are a and b?

In this quésﬂon its the D"”’ﬂs where poth lines Tﬁ
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Inlersec,
(x-lm z2 [y
x*=20x+100 = 81X
v -10[x+100=0
(x=1){x~l00)>0
x=(,100 i
which gives us *
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Exa mplc Y, I”maﬂ the area of the reqion bounded bv
Cté y and }/—' QK*W -
Aga'm et’s determing the +oro and.  botom functions, [
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But what are a and b7

1n this gluestien

i+s He points whaf\_e both lines

intersect.
—Yu Y = 9¢ 0= "1(x-8)(x-3)
i e XE 5%
CYx 4 x = 96 O
~Yx?2+ Y4x =96
02 fx*-Ydx + 9

0= Y[ x*=1l x + %)
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which gives «s
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Examole 5, Find the area of +he region bouncled by

y = Sinx , Y=CoSX , X= % R /6

Aaam let’s davtcrm;m +Hhe i~oo and__botterm FPunciions,




