Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name:

1. Find the general solution to the given differential question. Use C as an arbitrary constant.

$$
\frac{d y}{d t}-15 y=0
$$

\qquad
2. Find the general solution to the given differential question. Use C as an arbitrary constant.

$$
\frac{d y}{d x}=\frac{3}{y}
$$

$$
y=
$$

3. Find the general solution to the given differential question. Use C as an arbitrary constant.

$$
\frac{d y}{d x}=3 x^{2} y
$$

$$
y=
$$

4. Find the general solution to the given differential question. Use C as an arbitrary constant.

$$
\frac{d y}{d t}=8 e^{-4 t-y}
$$

$$
y=
$$

5. Find the particular solution to the differential equation.

$$
\frac{d y}{d x}=\frac{3 x+2}{2 y} \text { and } y(0)=4
$$

$$
y=
$$

6. Find the particular solution to the differential equation.

$$
\frac{d y}{d x}=\frac{5 y}{6 x+3} \text { and } y(0)=1
$$

$$
y=
$$

7. Consider the following IVP:

$$
\frac{d y}{d x}=11 x^{2} e^{-x^{3}} \text { where } y=10 \text { when } x=2
$$

Find the value of the integration constant, C.

$$
C=
$$

\qquad
8. What is the integrating factor of the following differential equation?

$$
2 y^{\prime}+\left(\frac{6}{x}\right) y=10 \ln (x)
$$

$$
u(x)=
$$

9. What is the integrating factor of the following differential equation?

$$
(x+1) \frac{d y}{d x}-2\left(x^{2}+x\right) y=(x+1) e^{x^{2}}
$$

$$
u(x)=
$$

10. What is the integrating factor of the following differential equation?

$$
y^{\prime}+\cot (x) \cdot y=\sin ^{2}(x)
$$

$$
u(x)=
$$

11. Solve the initial value problem.

$$
x^{4} y^{\prime}+4 x^{3} \cdot y=10 x^{9} \text { with } f(1)=23
$$

$$
y=
$$

12. (a) Use summation notation to write the series in compact form.

$$
1-0.6+0.36-0.216+\ldots
$$

Answer: \qquad
(b) Use the sum from (a) and compute the sum.

Answer:

13. If the given series converges, then find its sum. If not, state that it diverges.

$$
\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n}
$$

$$
\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n}=
$$

14. If the given series converges, then find its sum. If not, state that it diverges.

$$
\sum_{n=0}^{\infty} 6\left(-\frac{1}{9}\right)^{n}
$$

$$
\sum_{n=0}^{\infty} 6\left(-\frac{1}{9}\right)^{n}=
$$

\qquad
15. If the given series converges, then find its sum. If not, state that it diverges.

$$
\sum_{n=0}^{\infty}\left(\frac{7}{4^{n}}\right)
$$

$$
\sum_{n=0}^{\infty}\left(\frac{7}{4^{n}}\right)=
$$

16. Compute

$$
\sum_{n=1}^{\infty} \frac{5^{n+2}}{6^{n}}
$$

$$
\sum_{n=1}^{\infty} \frac{5^{n+2}}{6^{n}}=
$$

17. Compute

$$
\sum_{n=0}^{\infty} \frac{(-2)^{n}}{3^{2 n+1}}
$$

$$
\sum_{n=0}^{\infty} \frac{(-2)^{n}}{3^{2 n+1}}=
$$

18. Find the radius of convergence for the power series shown below.

$$
\sum_{n=0}^{\infty} 3(-2 x)^{n}
$$

$$
R=
$$

19. Find the radius of convergence for the power series shown below.

$$
\sum_{n=0}^{\infty} 3\left(7 x^{2}\right)^{n}
$$

$$
R=
$$

20. Express $f(x)=\frac{3}{1+2 x}$ as a power series and determine it's radius of converge.

$$
\begin{aligned}
& \frac{3}{1+2 x}= \\
& R=
\end{aligned}
$$

21. Express $f(x)=\frac{5 x}{3+2 x^{2}}$ as a power series and determine it's radius of converge.

$$
\begin{aligned}
& \frac{5 x}{3+2 x^{2}}= \\
& R=
\end{aligned}
$$

22. What are the first 3 non-zero terms of the Maclaurin series representation of the follow?

$$
\int \sin \left(x^{3 / 2}\right) d x
$$

$$
\int \sin \left(x^{3 / 2}\right) d x=
$$

23. Use a power series to approximate the definite integral using the first 4 terms of the series. Round to 5 decimal places.

$$
\int_{0}^{0.11} \frac{1}{1+x^{4}} d x
$$

$$
\int_{0}^{0.11} \frac{1}{1+x^{4}} d x \approx
$$

24. Use a power series to approximate the definite integral using the first 3 terms of the series. Round to 5 decimal places.

$$
\int_{0}^{0.23} e^{-x^{2}} d x
$$

$$
\int_{0}^{0.23} e^{-x^{2}} d x \approx
$$

\qquad
25. Use a power series to approximate the definite integral using the first 4 terms of the series. Round to 5 decimal places.

$$
\int_{0}^{0.45} 4 x \cos (\sqrt{x}) d x
$$

$$
\int_{0}^{0.45} 4 x \cos (\sqrt{x}) d x \approx
$$

\qquad
26. Use the first 3 terms of the Macluarin series for $f(x)=\ln (1+x)$ to evaluate $\ln (1.56)$. Round to 5 decimal places.

$$
\ln (1.56) \approx
$$

\qquad
27. Find the domain of

$$
f(x, y)=\frac{\sqrt{x+y-1}}{\ln (y-11)-9}
$$

Domain $=$

28. Find the domain of

$$
f(x, y)=\frac{\ln \left(x^{2}-y+3\right)}{\sqrt{x-6}}
$$

29. Describe the indicated level curves $f(x, y)=C$

$$
f(x, y)=\ln \left(x^{2}+y^{2}\right) C=\ln (36)
$$

(a) Parabola with vertices at $(0,0)$
(b) Circle with center at $(0, \ln (36))$ and radius 6
(c) Parabola with vertices at $(0, \ln (36))$
(d) Circle with center at $(0,0)$ and radius 6
(e) Increasing Logarithm Function
30. What do the level curves for the following function look like?

$$
f(x, y)=\ln \left(y-e^{5 x}\right)
$$

(a) Increasing exponential functions
(b) Rational Functions with x-axis symmetry
(c) Natural logarithm functions
(d) Decreasing exponential functions
(e) Rational Functions with y-axis symmetry
31. What do the level curves for the following function look like?

$$
f(x, y)=\sqrt{y+4 x^{2}}
$$

(a) Lines
(b) Parabolas
(c) Circles
(d) Point at the origin
(e) Ellipses
(f) Hyperbolas
32. Compute $f_{x}(6,5)$ when

$$
f(x, y)=\frac{(6 x-6 y)^{2}}{\sqrt{y^{2}-1}}
$$

$$
f_{x}(6,5)=
$$

33. Find the first order partial derivatives of

$$
f(x, y)=\frac{3 x^{2} y^{3}}{(y-1)^{2}}
$$

$$
\begin{gathered}
f_{x}(x, y)= \\
f_{y}(x, y)=
\end{gathered}
$$

34. Find the first order partial derivatives of

$$
f(x, y)=(x y-1)^{2}
$$

$$
f_{x}(x, y)=
$$

$$
f_{y}(x, y)=
$$

\qquad
35. Given the function $f(x, y)=4 x^{5} \tan (3 y)$, compute $f_{x y}(2, \pi / 3)$

$$
f_{x y}(2, \pi / 3)=
$$

\qquad
36. Find the second order partial derivatives of

$$
f(x, y)=x^{2} y \ln (7 x)
$$

$$
\begin{aligned}
& f_{x x}(x, y)= \\
& f_{x y}(x, y)= \\
& f_{y y}(x, y)=
\end{aligned}
$$

