Name:
Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Solutions

1. Find the general solution to the given differential question. Use C as an arbitrary constant. Note there are 2 ways $\frac{d y}{d t}-15 y=0 \quad \ln |y|=15+C$ to do this problem.
(1) Separation of Variables

$$
\begin{aligned}
& y=e^{15 t+c} \\
& y=e^{c} e^{15 t} \\
& y=C e^{15 t}
\end{aligned}
$$

2) First-order Linear Eqn

By method I,

$$
\begin{aligned}
\frac{d y}{d y} & =15 y \\
\frac{d y}{} & =15 d t \\
\int \frac{d y}{y} & =15 d t
\end{aligned}
$$

2. Find the general solution to the given differential question. Use C as an arbitrary constant.

$$
\begin{aligned}
& y d y=3 d x \\
& \int y d y=\int 3 d x \\
& \frac{y^{2}}{2}=3 x+c \\
& y^{2}=6 x+2 c \\
& y^{2}=6 x+c \\
& y= \pm \sqrt{6 x+c}
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{3}{y}
$$

$$
\pm \sqrt{6 x+C}
$$

3. Find the general solution to the given differential question. Use C as an arbitrary constant.

$$
\begin{aligned}
\frac{d y}{y} & =3 x^{2} d x \\
\int \frac{d y}{y} & =\int 3 x^{2} d x \\
\ln |y| & =x^{3}+c \\
y & =e^{x^{3}+c} \\
y & =e^{c} e^{x^{3}} \\
y & =C e^{x^{3}} \quad y=C e^{x^{3}}
\end{aligned}
$$

4. Find the general solution to the given differential question. Use C as an arbitrary constant.

$$
\begin{aligned}
& d y=8 e^{-4 t} e^{-y} d t \\
& e^{y} d y=8 e^{-4 t} d t \\
& \int e^{y} d y=\int 8 e^{-4 t} d t \\
& e^{y}=\frac{8}{-4} e^{-4 t}+c \\
& e^{y}=-2 e^{-4 t}+c \\
& y=\ln \left(-2 e^{-y+1}+c\right)=\ln \left(-2 e^{-y t}+C\right)
\end{aligned}
$$

5. Find the particular solution to the differential equation.

$$
\begin{array}{ll}
2 y d y=(3 x+2) d x \\
2 y d y=\int(3 x+2) d x & \text { So } y^{2}=\frac{3 x^{2}}{2}+2 x+16 \\
y^{2}=\frac{3 x^{2}}{2}+2 x+c & y= \pm \sqrt{\frac{3 x^{2}}{2}+2 x+16}
\end{array}
$$

when $y(0)=4$

$$
\begin{gathered}
4^{2}=0+0+c \\
16=c
\end{gathered}
$$

$$
\pm \sqrt{\frac{3 x^{2}}{2}+2 x+16}
$$

6. Find the particular solution to the differential equation.

$$
\begin{aligned}
& \frac{d y}{y}=\frac{5}{6 x+3} d x \\
& \int \frac{d y}{y}=\int \frac{5}{6 x+3} d x \\
& \ln |y|=\frac{5}{6} \ln |6 x+3|+c \\
& y=\exp \left[\frac{5}{6} \ln |6 x+3|+c\right] \\
& y=e^{c} \exp \left[\ln |6 x+3|^{5 / 6}\right] \\
& y=c \cdot|6 x+3|^{5 / 6}
\end{aligned}
$$

When $y(0)=1$

$$
\begin{aligned}
& 1=C \cdot|6(0)+3|^{5 / 6} \\
& 1=C \cdot 3^{5 / /} \\
& c=3^{-5 / 6}
\end{aligned}
$$

$y=3^{-5 / 6}|6 x+3|^{5 / 6}$
7. Consider the following IVP:

$$
\frac{d y}{d x}=11 x^{2} e^{-x^{3}} \text { where } y=10 \text { when } x=2
$$

Find the value of the integration constant, C.

$$
\begin{aligned}
& y=\int-\frac{11}{3} e^{u} d u \\
& y=-\frac{11}{3} e^{-x}+C
\end{aligned}
$$

8. What is the integrating factor of the following differential equation?

$$
\begin{aligned}
\frac{2 y^{\prime}+\left(\frac{6}{x}\right) y}{2} & =\frac{10 \ln (x)}{2} \\
y^{\prime}+\frac{3}{x} y & =5 \ln x \\
P(x) & =\frac{3}{x} Q(x)=5 \ln x \\
u(x) & =\exp \left[\int \frac{3}{x} d x\right] \\
& =\exp [3 \ln x] \\
& =e x p\left[\ln x^{3}\right] \\
& =x^{3}
\end{aligned}
$$

$$
u(x)=
$$

9. What is the integrating factor of the following differential equation?

$$
\begin{aligned}
& \frac{(x+1) \frac{d y}{d x}-2\left(x^{2}+x\right) y}{(x+1)}=\frac{(x+1) e^{x^{2}}}{(x+1)} \\
& \frac{d y}{d x}-\frac{2 x(x+1)}{(x+1)} y=e^{x^{2}} \\
& \frac{d y}{d x}+(-2 x) \cdot y=e^{x^{2}} \\
& u(x)=\exp \left[\int P(x) d x\right] \\
& \quad=\exp [S-2 x d x] \\
& =\exp \left[-x^{2}\right] \\
& u(x)=e^{-x^{2}}
\end{aligned}
$$

10. What is the integrating factor of the following differential equation?

$$
y^{\prime}+\cot (x) \cdot y=\sin ^{2}(x)
$$

$$
\begin{aligned}
u(x) & =\exp \left[\int p(x) d y\right] \\
& =\exp \left[\int \operatorname{sit} x d x\right] \\
& =\exp \left[\int \frac{\cos x}{\sin x} d x\right] \\
& u=\sin x \\
& d u=\cos x d x \\
= & \exp \left[\int \frac{d u}{u}\right] \\
= & \exp [\ln u] \\
u(x) & =\exp [\ln \sin x] \\
= & \sin x
\end{aligned}
$$

$$
u(x)=\sin x
$$

11. Solve the initial value problem.
$x^{4} y^{\prime}+4 x^{3} \cdot y=10 x^{9}$ with $f(1)=23$

$$
\begin{aligned}
& \frac{x^{4} y^{\prime}+4 x^{3} y}{x^{4}}=\frac{10 x^{9}}{x^{4}} \\
& y^{\prime}+\frac{4}{x} y \\
& \begin{aligned}
& P(x)=\frac{4}{x} Q(x)=10 x^{5} \\
& u(x)=\exp \left[\int P(x) d x\right] \\
&=\exp \left[S \frac{4}{x} d x\right] \\
&=\exp [4 \ln x] \\
&=\exp \left[\ln x^{\prime 1}\right] \\
&=x^{4}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& y \cdot u(x)=\int Q(x) u(x) d x+c \\
& y \cdot x^{4}=\int 10 x^{5} x^{4} d x+c \\
& y \cdot x^{4}=\int 10 x^{9} d x+c \\
& y \cdot x^{4}=x^{10}+c \\
& y=\frac{x^{10}}{x^{4}}+\frac{c}{x^{4}} \\
& y=x^{6}+\frac{c}{x^{4}} \\
& 23=1+\frac{c}{1} \\
& 22=c \\
& y=x^{6}+\frac{22}{x^{4}}
\end{aligned}
$$

$$
y=x^{6}+\frac{22}{x^{4}}
$$

12. (a) Use summation notation to write the series in compact form.

$$
\begin{aligned}
& \quad 1-0.6+0.36-0.216+\ldots \\
& =1-\frac{6}{10}+\frac{36}{100}-\frac{216}{1000}+\ldots \\
& =1-\frac{6}{10}+\left(\frac{6}{10}\right)^{2}-\left(\frac{6}{10}\right)^{3}+\ldots \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{6}{10}\right)^{n} \\
& =\sum_{n=0}^{\infty}\left(\frac{-6}{10}\right)^{n} \quad \text { Answer: }
\end{aligned}
$$

$$
\sum_{n=0}^{\infty}\left(\frac{-6}{10}\right)^{n}
$$

(b) Use the sum from (a) and compute the sum.

$$
\sum_{n=0}^{\infty}\left(\frac{-6}{10}\right)^{n}=\frac{1}{1-(-6 / 6)}=\frac{1}{1+6 / 10}=\frac{1}{16 / 10}=\frac{10}{16}=\frac{5}{8}
$$

$$
5 / 8
$$

Answer:
13. If the given series converges, then find its sum. If not, state that it diverges.

$$
\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n}
$$

Note $r=3 / 2$ and

$$
\left|\frac{3}{2}\right|<1 \text { is false }
$$

so the sum diverges

$$
\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n}={ }^{\text {diverges }}
$$

14. If the given series converges, then find its sum. If not, state that it diverges.

15. If the given series converges, then find its sum. If not, state that it diverges.

16. Compute

$$
\begin{aligned}
& =\frac{5^{3}}{6}+\frac{5^{4}}{6^{2}}+\frac{5^{5}}{6^{3}}+\cdots \sum_{n=1}^{\infty} \frac{5^{n+2}}{6^{n}} \\
& =\frac{5^{3}}{6}\left(1+\frac{5}{6}+\left(\frac{5}{6}\right)^{2}+\cdots\right) \\
& =\frac{125}{6} \sum_{n=0}^{\infty}\left(\frac{5}{6}\right)^{n}=\frac{125}{6} \cdot \frac{1}{1-5 / 6} \\
& =\frac{125}{6} \cdot \frac{1}{1 / 6}=\frac{125}{6} \cdot \frac{6}{1}=125 \\
\sum_{n=1}^{\infty} \frac{5^{n+2}}{6^{n}}= & 125
\end{aligned}
$$

17. Compute

$$
\begin{aligned}
\Rightarrow & =\sum_{n=0}^{\infty} \frac{(-2)^{n}}{3 \cdot 3^{2 n}} \sum_{n=0}^{\infty} \frac{(-2)^{n}}{3^{2 n+1}} \\
& =\sum_{n=0}^{\infty} \frac{1}{3} \cdot \frac{(-2)^{n}}{\left(3^{2}\right)^{n}} \\
& =\sum_{n=0}^{\infty} \frac{1}{3}\left(\frac{-2}{9}\right)^{n} \\
& =\frac{1 / 3}{1-(-2 / 9)} \\
& =\frac{1 / 3}{1+2 / 9} \\
& =\frac{1 / 3}{119} \\
& =\frac{1}{3} \cdot \frac{9}{11} \\
& =3 / 11
\end{aligned}
$$

18. Find the radius of convergence for the power series shown below.

Remember
$|-2 x|<1$
$12 \times 1<1$
$2|x|<1$
$|x|<1 / 2=R$

$$
R=1 / 2
$$

19. Find the radius of convergence for the power series shown below.

By algebra

$$
\begin{aligned}
& x^{2}<1 / 7 \\
& x< \pm \sqrt{1 / 7} \\
& |x|<\sqrt{1 / 7}
\end{aligned}
$$

$$
R=\sqrt{1 / 7}
$$

20. Express $f(x)=\frac{3}{1+2 x}$ as a power series and determine it's radius of converge.

21. Express $f(x)=\frac{5 x}{3+2 x^{2}}$ as a power series and determine it's radius of converge.

$$
\begin{aligned}
& \frac{5 x}{3\left(1+2 x^{2} / 3\right)}=\frac{5 x}{3} \cdot \frac{1}{1-\left(-\left(2 x^{2} / 3\right)\right)} \\
& \frac{1}{1-\left(-2 x^{2} / 3\right)}=\sum_{n=0}^{\infty}\left(-\frac{2 x^{2}}{3}\right)^{n} \text { where }\left|-\frac{2 x^{2}}{3}\right|<1
\end{aligned}
$$

$$
f(x)=\frac{5 x}{3} \cdot \frac{1}{1-\left(-2 x^{2} / 3\right)}=\frac{5 x}{3} \sum_{n=0}^{\infty}\left(\frac{-2 x^{2}}{3}\right)^{n}
$$

$$
f(x)=\frac{5 x}{3} \sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{2 n}}{3^{n}}
$$

$f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} \cdot 5 \cdot x^{2 n+1}}{3^{n+1}}$

$$
\begin{aligned}
& \frac{5 x}{3+2 x^{2}}=\begin{array}{|}
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} \cdot 5 \cdot x^{2 n+1}}{3^{n+1}} \\
R= & \sqrt{3 / 2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3}{1+2 x}=\frac{3}{1} \cdot \frac{1}{1+2 x}=\frac{3}{1} \cdot \frac{1}{1-(-2 x)} \\
& \frac{1}{1-(-2 x)}=\sum_{n=0}^{\infty}(-2 x)^{n} \text { where }|-2 x|<1 \\
& f(x)=\frac{3}{1-(-2 x)}=3 \sum_{n=0}^{\infty}(-3 x)^{n} \text { where } 2|x|<\mid \\
& =\sum_{n=0}^{\infty} 3(-1)^{n} 2^{n} x^{n} \text { where }|x|<1 / 2
\end{aligned}
$$

22. What are the first 3 non-zero terms of the Maclaurin series representation of the follow?

$$
\begin{aligned}
\sin x & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \\
\sin \left(x^{3 / 2}\right) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(x^{3 / 2}\right)^{2 n+1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{3 n+3 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \int \sin \left(x^{3 / 2}\right) d x \\
& \int \sin \left(x^{3 / 2}\right) d x=\int \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{3 n+3 / 2} d x \\
&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{3 n+3 / 2} d x \\
&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \frac{x^{3 n+5 / 2}}{3 n+5 / 2} \\
&=\frac{x^{5 / 2}}{5 / 2}-\frac{x^{11 / 2}}{6 \cdot(3+5 / 2)}+\frac{x^{17 / 5}}{5!(6+5 / 2)}
\end{aligned}
$$

$$
\int \sin \left(x^{3 / 2}\right) d x=\frac{x^{5 / 2}}{5 / 2}-\frac{x^{11 / 2}}{6 \cdot(3+5 / 2)}+\frac{x^{17 / 5}}{5!(6+5 / 2)}
$$

23. Use a power series to approximate the definite integral using the first 4 terms of the series. Round to 5 decimal places.

$$
\begin{aligned}
& \int_{0}^{0.11} \frac{1}{1+x^{4}} d x \\
& \frac{1}{1+x^{4}}=\frac{1}{1-\left(-x^{4}\right)}=\sum_{n=0}^{\infty}\left(-x^{4}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{4 n} \\
& \int_{0}^{0.11} \frac{1}{1+x^{4}} d x=\int_{0}^{0.11} \sum_{n=0}^{\infty}(-1)^{n} x^{4 n} d x \\
& =\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{0.11} x^{4 / n} d x \\
& \left.=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+1}}{4 n+1}\right]_{0}^{0.11} \\
& \left.=\left(x-\frac{x^{5}}{5}+\frac{x^{9}}{9}-\frac{x^{13}}{13}\right)\right]_{0}^{0.11} \\
& \int_{0}^{0.11} \frac{1}{1+x^{4}} d x \approx
\end{aligned}
$$

24. Use a power series to approximate the definite integral using the first 3 terms of the series. Round to 5 decimal places.

$$
\left.\begin{array}{rl}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n} \\
\int_{0}^{0.23} e^{-x^{2}} d x & =\int_{0}^{0.23} \sum_{n=0}^{\infty} \frac{(-1)^{-x^{2}} d x}{n!} x^{2 n} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{0.23} x^{2 n} d x \\
& \left.=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{x^{2 n-1}}{2 n+1}\right]_{0}^{0.23} \\
& \left.=\left(\frac{x}{0}-\frac{x^{3}}{1!(3)}+\frac{x^{5}}{2!(5)}\right)\right]_{0}^{0.23}
\end{array}\right]=0 .
$$

25. Use a power series to approximate the definite integral using the first 4 terms of the series. Round to 5 decimal places.

$$
\begin{aligned}
& \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \\
& \cos (\sqrt{x})=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(x^{1 / 2}\right)^{2 n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n} \\
& \left.f(x)=4 x \cos (\sqrt{x})=4 x \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n} \quad=\left(2 x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{36}-\frac{x^{8}}{1440}\right)\right]_{0}^{0.45} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \cdot 4 x^{n+1} \\
& \int_{0}^{0.45} 4 x \cos (\sqrt{x}) d x=\int_{0}^{0.45} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \cdot 4 x^{n+1} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} 4 \int_{0}^{0.45} x^{n+1} d x_{0}^{0.45} 4 x \cos (\sqrt{x}) d x \approx \\
& 0.34847
\end{aligned}
$$

26. Use the first 3 terms of the Macluarin series for $f(x)=\ln (1+x)$ to evaluate $\ln (1.56)$. Round to 5 decimal places.

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}
$$

Note $1.56=1+0.56$

$$
\begin{aligned}
& \ln (1+0.56)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(0.56)^{n} \\
&=0.56-\frac{(0.56)^{2}}{2}+\frac{(0.56)^{3}}{3} \\
& \ln (1.56) \approx
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y)=\frac{\sqrt{x+y-1}}{\ln (y-11)-9} \\
& \sqrt{x+y-1} \rightarrow \begin{array}{c}
x+y-1 \geq 0 \\
x+y \geq 1
\end{array} \\
& \ln (?) \rightarrow ?>0 \\
& \frac{1}{?} \rightarrow ? \neq 0 \\
& \begin{aligned}
& \ln (y-11) \rightarrow y-11>0 \\
& y>11
\end{aligned} \\
& \ln (y-11)-9 \neq 0 \\
& \ln (y-11) \neq 9 \\
& \begin{array}{l}
y-11 \neq e^{9} \\
y \neq e^{9}+11
\end{array} \\
& \text { Domain }= \\
& \sqrt{?} \rightarrow ? \geq 0 \\
& \sqrt{x+y-1}-x+y-1 \geq 0 \quad f(x, y)=\ln (y-11)-9 \\
& \left.\{(x, y) \mid x+y \geq y, y)\|, y \neq\|+e^{9}\right\}
\end{aligned}
$$

0.46174
27. Find the domain of
28. Find the domain of

$$
\begin{aligned}
& \ln (?) \rightarrow ?>0 \\
& \ln \left(x^{2}-y+3\right) \rightarrow x^{2}-y+3>0 \\
& x^{2}+3>y \\
& \frac{1}{\sqrt{?}} \rightarrow ?>0 \\
& \frac{1}{\sqrt{x-6}}-1 x-6>0 \\
& \text { Domain }= \\
& \left\{(x, y) \mid x>6, x^{2}+3>y\right\}
\end{aligned}
$$

29. Describe the indicated level curves $f(x, y)=C$

$$
f(x, y)=\ln \left(x^{2}+y^{2}\right) C=\ln (36)
$$

(a) Parabola with vertices at $(0,0)$
(b) Circle with center at $(0, \ln (36))$ and radius 6

$$
\ln \left(x^{2}+y^{2}\right)=\ln (36)
$$

(c) Parabola with vertices at $(0, \ln (36))$
(d) Circle with center at $(0,0)$ and radius
$x^{2}+y^{2}=36$
$x^{2}+y^{2}=b^{2}$
(e) Increasing Logarithm Function
30. What do the level curves for the following function look like?
(a) Increasing exponential functions
(b) Rational Functions with x-axis symmetry
(c) Natural logarithm functions
(d) Decreasing exponential functions
(e) Rational Functions with y-axis symmetry

$$
\begin{aligned}
& f(x, y)=\ln \left(y-e^{5 x}\right) \\
& \ln \left(y-e^{5 x}\right)=c \\
& \text { metry } y-e^{5 x}=e^{c} \\
& y-e^{5 x}=c \\
& y=e^{5 x}+c
\end{aligned}
$$

31. What do the level curves for the following function look like?

$$
\begin{array}{r}
f(x, y)=\sqrt{y+4 x^{2}} \\
\sqrt{y+4 x^{2}}=C \\
y+4 x^{2}=C^{2} \\
y+4 x^{2}=C \\
y=-4 x^{2}+C
\end{array}
$$

32. Compute $f_{x}(6,5)$ when

$$
\begin{aligned}
f_{x}(x, y) & =\frac{d}{d x}\left(\frac{(6 x+6 y)^{2}}{\sqrt{y^{2}-1}}\right) \quad f(x, y)=\frac{(6 x-6 y)^{2}}{\sqrt{y^{2}-1}} \\
& =\frac{1}{\sqrt{y^{2}-1}} \frac{d}{d x}\left((6 x+6 y)^{2}\right) \\
& =\frac{1}{\sqrt{y^{2}-1}} \cdot 2(6 x+6 y) \frac{d}{d x}(6 x+6 y) \\
& =\frac{1}{\sqrt{y^{2}-1}} \cdot 2(6 x+6 y) \cdot 6 \\
& =\frac{72 x+72 y}{\sqrt{y^{2}-1}} \quad f_{x}(6,5)=79 / \sqrt{24}
\end{aligned}
$$

33. Find the first order partial derivatives of

$$
\begin{aligned}
f(x, y) & =3 x^{2} \cdot \frac{y^{3}}{(y-1)^{2}} \quad f(x, y)=\frac{3 x y^{2} y^{3}}{(y-1)^{2}} \\
f_{x}(x, y) & =\frac{d}{d x}\left(3 x^{2} \cdot \frac{y^{3}}{(y-1)^{2}}\right)=\frac{y^{3}}{(y-1)^{2}} \cdot \frac{d}{d x}\left(3 x^{2}\right)=\frac{y^{3}}{(y-1)^{2}} \cdot 6 x \\
f_{y}(x, y) & =\frac{d}{d y}\left(3 x^{2} \cdot \frac{y^{3}}{(y-1)^{2}}\right)=3 x^{2} \frac{d}{d y}\left(\frac{y^{3}}{(y-1)^{2}}\right)=3 x^{2}\left(\frac{3 y^{2}(y-1)^{2}-y^{3} \cdot 2(y-1)}{(y-1)^{4}}\right) \\
& =3 x^{2}\left(\frac{(y-1)\left[3 y^{2}(y-1)-2 y^{3}\right]}{(y-1)^{43}}\right)=\frac{3 x^{2}\left(3 y^{3}-3 y^{2}-2 y^{3}\right)}{(y-1)^{3}} \\
& =\frac{3 x^{2}\left(y^{3}-3 y^{2}\right)}{(y-1)^{3}} \\
f_{x}(x, y)= & =\frac{6 x y^{3} /(y-1)^{2}}{f_{y}(x, y)}=\frac{3 x^{2}\left(y^{3}-3 y^{2}\right)}{(y-1)^{3}}
\end{aligned}
$$

34. Find the first order partial derivatives of

$$
\begin{aligned}
f_{x}(x, y)=\frac{d}{d x}\left((x y-1)^{2}\right) & =2(x y-1) \frac{d}{d x}(x y-1)=(x y-1)^{2} \\
& =2(x y-1) y \\
& =2 x y^{2}-2 y
\end{aligned}
$$

$$
\begin{aligned}
& f_{y}(x, y)=\frac{d}{d y}\left((x y-1)^{2}\right)= 2(x y-1) \frac{d}{d y}(x y-1) \\
&= 2(x y-1) x \\
&= 2 x^{2} y-2 x \\
& f_{x}(x, y)=\begin{array}{l}
2 x y^{2}-2 y \\
f_{y}(x, y)=
\end{array}
\end{aligned}
$$

35. Given the function $f(x, y)=4 x^{5} \tan (3 y)$, compute $f_{x y}(2, \pi / 3)$

$$
\begin{aligned}
f_{x}(x, y)=\frac{d}{d x}\left(4 x^{5} \tan (3 y)\right) & =\tan (3 y) \cdot \frac{d}{d x}\left(4 x^{5}\right) \\
& =\tan (3 y) \cdot\left(20 x^{4}\right)
\end{aligned} \quad \begin{aligned}
& f_{x y}(x, y)=\frac{d}{d y}\left(f_{x}(x, y)\right)=\frac{d}{d y}\left(\tan (3 y) \cdot\left(20 x^{4}\right)\right)=20 x^{4} \frac{d}{d y}(\tan (3 y)) \\
&=20 x^{4} \cdot \sec ^{2}(3 y) \cdot 3 \\
&=60 x^{4} \sec ^{2}(3 y) \\
& \begin{aligned}
f_{x y}(2, \pi / 3) & =60(2)^{4} \sec ^{2}(3 \pi / 3) \\
& =60(16) \sec ^{2}(\pi) \\
& =960
\end{aligned} \\
& \quad f_{x y}(2, \pi / 3)=960
\end{aligned}
$$

36. Find the second order partial derivatives of

$$
\begin{aligned}
f(x, y) & =\left(x^{2} \ln (7 x)\right) y \\
f_{x}(x, y) & =\frac{d}{d x}\left(\left(x^{2} \ln (7 x)\right) \cdot y\right)=y \frac{d}{d x}\left(x^{2} \ln (7 x)\right) \\
& =y\left(2 x \ln (7 x)+x^{2} \frac{1}{7 x} \cdot 7\right)=y(2 x \ln (7 x)+x) \\
f_{x x}(x, y) & =\frac{d}{d x}(y(2 x \ln (7 x)+x))=y \frac{d}{d x}(2 x \ln (7 x)+x) \\
& =y\left(2 \ln (7 x)+2 x \cdot \frac{1}{7 x} \cdot 7+1\right)=y(2 \ln (7 x)+2+1) \\
& =y(2 \ln (7 x)+3)
\end{aligned}
$$

$$
\begin{aligned}
f_{x y}(x, y) & =\frac{d}{d y}(y(2 x \ln (7 x)+x))=(2 x \ln (7 x)+x) \frac{d}{d y}(y) \\
& =2 x \ln (7 x)+x \\
f_{y}(x, y) & =\frac{d}{d y}\left(\left(x^{2} \ln (7 x)\right) \cdot y\right)=\left(x^{2} \ln (7 x)\right) \frac{d}{d y}(y)=x^{2} \ln (7 x) \\
f_{y y}(x, y) & =\frac{d}{d y}\left(x^{2} \ln (7 x)\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& f_{x x}(x, y)=\frac{(2 \ln (7 x)+3) y}{2 x \ln (7 x)+x} \\
& f_{x y}(x, y)= \\
& f_{y}(x, y)=0
\end{aligned}
$$

