Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. [$\mathbf{1 0} \mathbf{~ p t s}$] Given the information in the table below, find and classify any critical points for the function $g(x, y)$.

$\left(x_{0}, y_{0}\right)$	$g\left(x_{0}, y_{0}\right)$	$g_{x}\left(x_{0}, y_{0}\right)$	$g_{y}\left(x_{0}, y_{0}\right)$	$g_{x x}\left(x_{0}, y_{0}\right)$	$g_{y y}\left(x_{0}, y_{0}\right)$	$g_{x y}\left(x_{0}, y_{0}\right)$
$(4,5)$	1	-4	0	5	8	-3
$(5,-10)$	-10	0	0	5	-10	6
$(10,10)$	0	0	0	-4	-6	-4
$(7,9)$	4	0	0	5	7	4
$(4,8)$	2	0	0	2	2	2

Solution: First check for each point that both g_{x} and g_{y} are 0 .

- Hence $(4,5)$ is not a critical point. [2 pts]

Next, let's compute the discriminant of each point.

- $\underline{(5,-10):} D=g_{x x} g_{y y}-\left(g_{x y}\right)^{2}=5 \cdot(-10)-(6)^{2}=-86$
- $\left(\underline{10,10):} D=g_{x x} g_{y y}-\left(g_{x y}\right)^{2}=(-4) \cdot(-6)-(-4)^{2}=8\right.$
- $\underline{(7,9):} D=g_{x x} g_{y y}-\left(g_{x y}\right)^{2}=5 \cdot 7-(4)^{2}=19$
- $\underline{(4,8):} D=g_{x x} g_{y y}-\left(g_{x y}\right)^{2}=2 \cdot 2-(2)^{2}=0$

When $D>0$, we have a relative extrema. Hence $(10,10)$ and $(7,9)$ are relative extrema. To determine whether they are maxs or mins, we need to check the sign of $g_{x x}$.

- $(10,10): g_{x x}=-4<0$. Hence $(10,10)$ is a relative max. [2 pts]
- $(7,9): g_{x x}=5>0$. Hence $(7,9)$ is a relative min. [1 pt]

When $D<0$, we have a saddle point. Hence $(5,-10)$ is a saddle point. [$\mathbf{2} \mathbf{p t s}$]
When $D=0$, the test is inconclusive. Hence at $(4,8)$ the test is inconclusive. [$\mathbf{2} \mathbf{~ p t s}$]

